Skip to main content
Log in

Anthocyanins: a comprehensive review on biosynthesis, structural diversity, and industrial applications

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

Anthocyanins, a sub-class of polyphenolic secondary metabolites, are the subject of research in numerous pharmacological chemical studies and food industries. These molecules exhibit a wide array of pharmacological benefits own fascinating different molecular architectures and reflect colorful hues, which have made them popular targets for their studies. The potential application of anthocyanins (natural pigment) has attracted numerous widespread industrial interest. The beautiful colorant unveiled by anthocyanins has widened the scope of anthocyanin applications in food. This review summarizes the isolation of more than 200 new anthocyanins during 2010–2023 along with a discussion of their structural diversities, structural elucidation, biosynthetic pathway and more importantly, their industrial relevance in food. These molecules are classified into acylated anthocyanins and non-acylated anthocyanins, which are further divided according to their substitution pattern i.e. O-methylated anthocyanins, 3-deoxyanthocyanins. These are systematized into their derivative viz. pyranoanthocyanins, pyranoanthocyanins dimers, and metalloanthocyanins. The present review also focuses on the structural characterization of anthocyanins by nuclear magnetic resonance spectroscopy.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Fig. 3

Similar content being viewed by others

References

  • Adaku C, Skaar I, Berland H, Byamukama R, Jordheim M, Andersen ØM (2019) Anthocyanins from mauve flowers of Erlangea tomentosa (Bothriocline longipes) based on erlangidin–the first reported natural anthocyanidin with C-ring methoxylation. Phytochem Lett 29:225–230

    Article  CAS  Google Scholar 

  • Ahmed NU, Park J-I, Jung H-J, Yang T-J, Hur Y, Nou I-S (2014) Characterization of dihydroflavonol 4-reductase (DFR) genes and their association with cold and freezing stress in Brassica rapa. Gene 550:46–55

    Article  CAS  PubMed  Google Scholar 

  • Alappat B, Alappat J (2020) Anthocyanin pigments: beyond Aesthetics. Molecules 25:5500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alizadeh-Sani M, Mohammadian E, Rhim JW, Jafari SM (2020) pH-sensitive (halochromic) smart packaging films based on natural food colorants for the monitoring of food quality and safety. Trends Food Sci Technol 105:93–144

    Article  CAS  Google Scholar 

  • Alvarez-Suarez JM, Cuadrado C, Redondo IB, Giampieri F, González-Paramás AM, Santos-Buelga C (2021) Novel approaches in anthocyanin research-Plant fortification and bioavailability issues. Trends Food Sci Tech 117:92–105

    Article  CAS  Google Scholar 

  • Andersen ØM, Aksnes DW, Nerdal W, Johansen O (1991) Structure elucidation of cyanidin-3-sambubioside and assignments of the 1H and 13C NMR resonances through two-dimensional shift-correlated NMR techniques. Phytochem Anal 2:175–183

    Article  CAS  Google Scholar 

  • Andersen ØM, Fossen T (2003) Characterization of anthocyanins by NMR. Curr Protoc Food Anal Chem 9:F1-4

    Article  Google Scholar 

  • Andersen ØM, Jordheim M, Byamukama R, Mbabazi A, Ogweng G, Skaar I, Kiremire B (2010) Anthocyanins with unusual furanose sugar (apiose) from leaves of Synadenium grantii (Euphorbiaceae). Phytochemistry 71:1558–1563

    Article  CAS  PubMed  Google Scholar 

  • Andersen OM, Markham KR (2005) Flavonoids: chemistry, biochemistry and applications. CRC Press, Boca Raton

    Book  Google Scholar 

  • Andrés-Bello A, Barreto-Palacios V, García-Segovia P, Mir-Bel J, Martínez-Monzó J (2013) Effect of pH on color and texture of food products. Food Eng Rev 5:158–170. https://doi.org/10.1007/s12393-013-9067-2

    Article  CAS  Google Scholar 

  • Bai Y, Findlay B, Sanchez Maldonado AF, Schieber A, Vederas JC, Gänzle MG (2014) Novel pyrano and vinylphenol adducts of deoxyanthocyanidins in sorghum sourdough. J Agric Food Chem 62:11536–11546. https://doi.org/10.1021/jf503330b

    Article  CAS  PubMed  Google Scholar 

  • Bao S, Luo L, Wan Y, Xu K, Tan G, Fan J, Li S-M, Yu X (2021) Regiospecific 7-O-prenylation of anthocyanins by a fungal prenyltransferase. Bioorg Chem 110:104787

    Article  CAS  PubMed  Google Scholar 

  • Baublis AJ, Berber-Jimenez MD (1995) Structural and conformational characterization of a stable anthocyanin from Tradescantia pallida. J Agric Food Chem 43:640–646

    Article  CAS  Google Scholar 

  • Becerril R, Nerín C, Silva F (2021) Bring some colour to your package: Freshness indicators based on anthocyanin extracts. Trends Food Sci Technol 111:495–505

    Article  CAS  Google Scholar 

  • Belwal T, Singh G, Jeandet P, Pandey A, Giri L, Ramola S, Bhatt ID, Venskutonis PR, Georgiev MI, Clément C (2020) Anthocyanins, multi-functional natural products of industrial relevance: recent biotechnological advances. Biotechnol Adv 43:107600

    Article  CAS  PubMed  Google Scholar 

  • Bendokas V, Skemiene K, Trumbeckaite S, Stanys V, Passamonti S, Borutaite V, Liobikas J (2019) Anthocyanins: from plant pigments to health benefits at mitochondrial level. Crit Rev Food Sci Nutr 60:3352–3365

    Article  PubMed  Google Scholar 

  • Al Bittar S, Mora N, Loonis M, Dangles O (2016) A simple synthesis of 3-deoxyanthocyanidins and their O-glucosides. Tetrahedron 72:4294–4302

    Article  CAS  Google Scholar 

  • Brauch JE, Buchweitz M, Schweiggert RM, Carle R (2016) Detailed analyses of fresh and dried maqui (Aristotelia chilensis (Mol.) Stuntz) berries and juice. Food Chem 190:308–316

    Article  CAS  PubMed  Google Scholar 

  • Brauch JE, Reuter L, Conrad J, Vogel H, Schweiggert RM, Carle R (2017) Characterization of anthocyanins in novel Chilean maqui berry clones by HPLC–DAD–ESI/MSn and NMR-spectroscopy. J Food Compos Anal 58:16–22

    Article  CAS  Google Scholar 

  • Cabrita L (2015) A novel acylated anthocyanin with a linear trisaccharide from flowers of Convolvulus althaeoides. Nat Prod Commun 10:1934578X1501001140.

  • Calderaro A, Barreca D, Bellocco E, Smeriglio A, Trombetta D, Laganà G (2020) In: Nabavi SM, Barreca D, Suntar I, Khan H (ed) Phytonutrients in food. Woodhead publishing, Elsevier Inc., Amsterdam

  • Carbonneau M-A, Cisse M, Mora-Soumille N, Dairi S, Rosa M, Michel F, Lauret C, Cristol J-P, Dangles O (2014) Antioxidant properties of 3-deoxyanthocyanidins and polyphenolic extracts from Côte d’Ivoire’s red and white sorghums assessed by ORAC and in vitro LDL oxidisability tests. Food Chem 145:701–709

    Article  CAS  PubMed  Google Scholar 

  • Castañeda-Ovando A, de Lourdes P-H, Páez-Hernández ME, Rodríguez JA, Galán-Vidal CA (2009) Chemical studies of anthocyanins: a review. Food Chem 113:859–871

    Article  Google Scholar 

  • Castillo-Muñoz N, Winterhalter P, Weber F, Gómez MV, Gómez-Alonso S, García-Romero E, Hermosín-Gutiérrez I (2010) Structure elucidation of Peonidin 3,7-O-β-diglucoside Isolated from Garnacha Tintorera (Vitis vinifera L.) Grapes. J Agric Food Chem 58:11105–11111

    Article  PubMed  Google Scholar 

  • Cavalcanti RN, Santos DT, Meireles MAA (2011) Non-thermal stabilization mechanisms of anthocyanins in model and food systems—an overview. Food Res Int 44:499–509

    Article  CAS  Google Scholar 

  • Chalker-Scott L (1999) Environmental significance of anthocyanins in plant stress responses. Photochem Photobiol 70:1–9

    Article  CAS  Google Scholar 

  • Chatham L, West L, Berhow MA, Vermillion KE, Juvik JA (2018) Unique flavanol-anthocyanin condensed forms in the purple corn landrace Apache Red. J Agric Food Chem 66:10844–10854. https://doi.org/10.1021/acs.jafc.8b04723

    Article  CAS  PubMed  Google Scholar 

  • Clifford MN (2000) Anthocyanins–nature, occurrence and dietary burden. J Sci Food Agric 80:1063–1072

    Article  CAS  Google Scholar 

  • Cortez R, Luna-Vital DA, Margulis D, Gonzalez de Mejia E (2017) Natural pigments: stabilization methods of anthocyanins for food applications. Compr Rev Food Sci Food Saf 16:180–198

    Article  CAS  PubMed  Google Scholar 

  • Crozier A, Clifford MN, Ashihara H (2006) Plant secondary metabolites. Occur Struct Role Hum Diet, pp 1–372.

  • Dangles O, Fenger J-A (2018) The chemical reactivity of anthocyanins and its consequences in food science and nutrition. Molecules 23:1970

    Article  PubMed  PubMed Central  Google Scholar 

  • Deguchi A, Tatsuzawa F, Miyoshi K (2020) A blackish-flowered cultivar of Catharanthus roseus accumulates high concentrations of a novel anthocyanin with a unique feature of aggregation in weak acid solutions. Dye Pigment 173:108001

    Article  CAS  Google Scholar 

  • De Mejia EG, Zhang Q, Penta K, Eroglu A, Lila MA (2020) The colors of health: chemistry, bioactivity, and market demand for colorful foods and natural food sources of colorants. Annu Rev Food Sci Technol 11:145–182

    Article  PubMed  Google Scholar 

  • Delgado-Vargas F, Jiménez AR, Paredes-López O (2000) Natural pigments: carotenoids, anthocyanins, and betalains—characteristics, biosynthesis, processing, and stability. Crit Rev Food Sci Nutr 40:173–289

    Article  CAS  PubMed  Google Scholar 

  • Denish PR, Fenger J-A, Powers R, Sigurdson GT, Grisanti L, Guggenheim KG, Laporte S, Li J, Kondo T, Magistrato A (2021) Discovery of a natural cyan blue: a unique food-sourced anthocyanin could replace synthetic brilliant blue. Sci Adv 7:eabe7871.

  • Dey PM, Harborne JB (1993) Plant phenolics methods in plant biochemistry, 2nd edn. Academic Press Limited, London

    Google Scholar 

  • Eder R (2000) In: Nollet LML (ed) Food analysis by HPLC. Marcel Dekker Inc., New York

  • Fang J (2015) Classification of fruits based on anthocyanin types and relevance to their health effects. Nutrition 31:1301–1306

    Article  CAS  PubMed  Google Scholar 

  • Fernandes I, Pérez-Gregorio R, Soares S, Mateus N, De Freitas V (2017) Wine flavonoids in health and disease prevention. Molecules 22:292

    Article  PubMed  PubMed Central  Google Scholar 

  • Flores FP, Singh RK, Kong F (2016) Anthocyanin extraction, microencapsulation, and release properties during in vitro digestion. Food Rev Int 32:46–67

    Article  CAS  Google Scholar 

  • Gang H, Zhang Q, Chen J, Qin D, Huo J (2021) Identification of R2R3-MYB gene family reveal candidate genes for anthocyanin biosynthesis in Lonicera caerulea fruit based on RNA-seq data. J Berry Res 11:669–687

    Article  CAS  Google Scholar 

  • Geera B, Ojwang LO, Awika JM (2012) New highly stable dimeric 3-deoxyanthocyanidin pigments from Sorghum bicolor leaf sheath. J Food Sci 77:C566–C572

    Article  CAS  PubMed  Google Scholar 

  • Giampieri F, Cianciosi D, Alvarez-Suarez JM, Quiles JL, Forbes-Hernández TY, Navarro-Hortal MD, Machi M, del Jesús Palí Casanova R, Espinosa JCM, Xiumin C, Zhang D, Bai W, Lingmin T, Mezzetti B, Battino M, Diaz YA (2023) Anthocyanins: what do we know until now? J Berry Res 13:1–6

    Article  Google Scholar 

  • Gómez-Alonso S, Blanco-Vega D, Gómez MV, Hermosín-Gutiérrez I (2012) Synthesis, isolation, structure elucidation, and color properties of 10-acetyl-pyranoanthocyanins. J Agric Food Chem 60:12210–12223

    Article  PubMed  Google Scholar 

  • Guo J, Wang M-H (2010) Ultraviolet A-specific induction of anthocyanin biosynthesis and PAL expression in tomato (Solanum lycopersicum L.). Plant Growth Regul 62:1–8

    Article  CAS  Google Scholar 

  • Hang NTT, Miyajima I, Ureshino K, Kobayashi N, Kurashige Y, Matsui T, Okubo H (2011) Anthocyanins of wild Rhododendron simsii Planch. flowers in Vietnam and Japan. J Japanese Soc Hortic Sci 80:206–213

    Article  Google Scholar 

  • Harborne AJ (1998) Phytochemical methods a guide to modern techniques of plant analysis. Springer, Netherlands

    Google Scholar 

  • Harborne JB (1962) Plant polyphenols: 5. Occurrence of azalein and related pigments in flowers of Plumbago and Rhododendron species. Arch Biochem Biophys 96:171–178

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto M, Suzuki T, Iwashina T (2011) New acylated anthocyanins and other flavonoids from the red flowers of Clematis cultivars. Nat Prod Commun 6:1631–1636

    CAS  PubMed  Google Scholar 

  • He J, Giusti MM (2010) Anthocyanins: natural colorants with health-promoting properties. Annu Rev Food Sci Technol 1:163–187

    Article  CAS  PubMed  Google Scholar 

  • He J, Oliveira J, Silva AMS, Mateus N, De Freitas V (2010) Oxovitisins: a new class of neutral pyranone-anthocyanin derivatives in red wines. J Agric Food Chem 58:8814–8819

    Article  CAS  PubMed  Google Scholar 

  • He J, Silva AMS, Mateus N, de Freitas V (2011) Oxidative formation and structural characterisation of new α-pyranone (lactone) compounds of non-oxonium nature originated from fruit anthocyanins. Food Chem 127:984–992

    Article  CAS  PubMed  Google Scholar 

  • Hermosín-Gutiérrez I, Gómez-Alonso S, Pérez-Navarro J, Kurt A, Colak N, Akpınar E, Hayirlioglu-Ayaz S, Ayaz FA (2020) Vitis vinifera Turkish grape cultivar Karaerik. Part I: anthocyanin composition, and identification of a newly found anthocyanin. J Sci Food Agric 100:1301–1310

    Article  PubMed  Google Scholar 

  • Hoballah ME, Gübitz T, Stuurman J, Broger L, Barone M, Mandel T, Dell’Olivo A, Arnold M, Kuhlemeier C (2007) Single Gene-mediated shift in pollinator attraction in Petunia. Plant Cell 19:779–790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Zhou S, Zhao G, Ye F (2021) Destabilisation and stabilisation of anthocyanins in purple-fleshed sweet potatoes: a review. Trends Food Sci Technol 116:1141–1154

    Article  CAS  Google Scholar 

  • Huixing G, Qian Z, Jing C, Dong Q, Junwei H (2021) Identification of R2R3-MYB gene family candidate gene for anthocyanin biosynthesis in Lonicera caerulea fruit based on RNA-seq data. J Berry Res 11:669–687

    Article  Google Scholar 

  • Idaka E, Ohashi Y, Ogawa T, Kondo T, Goto O (1987) Structure of zebrinin, a novel acylated anthocyanin isolated from Zebrina pendula. Tetrahedron Lett 28:1901–1904

    Article  CAS  Google Scholar 

  • Ishikura N, Minekishi K (1978) New delphinidin glycosides isolated from Vinca major flowers. Bot Mag Tokyo 91:181–186

    Article  CAS  Google Scholar 

  • Ito S, Kato K, Tatsuzawa F (2013) Acylated cyanidin 3-sambubioside-5-glucosides in the red-purple flowers of Arabis blepharophylla Hook. & Arn. (Brassicaceae). Biochem Syst Ecol 48:65–69

    Article  CAS  Google Scholar 

  • Iorizzo M, Curaba J, Pottorff M, Ferruzzi MG, Simon PW, Cavagnaro P (2020) Carrot Anthocyanins Genetics and Genomics: Status and Perspectives to Improve Its Application for the Food Colorant Industry. Genes 11:906. https://doi.org/10.3390/genes11080906

  • Jin H, Liu Y, Guo Z, Yang F, Wang J, Li X, Peng X, Liang X (2015) High-performance liquid chromatography separation of cis–trans anthocyanin isomers from wild Lycium ruthenicum Murr. employing a mixed-mode reversed-phase/strong anion-exchange stationary phase. J Agric Food Chem 63:500–508

    Article  CAS  PubMed  Google Scholar 

  • Jordheim M, Calcott K, Gould KS, Davies KM, Schwinn KE, Andersen ØM (2016) High concentrations of aromatic acylated anthocyanins found in cauline hairs in Plectranthus ciliatus. Phytochemistry 128:27–34

    Article  CAS  PubMed  Google Scholar 

  • Khalil A, Baltenweck-Guyot R, Ocampo-Torres R, Albrecht P (2010) A novel symmetrical pyrano-3-deoxyanthocyanidin from a Sorghum species. Phytochem Lett 3:93–95

    Article  CAS  Google Scholar 

  • Khoo HE, Azlan A, Tang ST, Lim SM (2017) Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr Res 61:1361779

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim HW, Kim JB, Cho SM, Chung MN, Lee YM, Chu SM, Che JH, Kim SN, Kim SY, Cho YS (2012) Anthocyanin changes in the Korean purple-fleshed sweet potato, Shinzami, as affected by steaming and baking. Food Chem 130:966–972

    Article  CAS  Google Scholar 

  • Kirby CW, Wu T, Tsao R, McCallum JL (2013) Isolation and structural characterization of unusual pyranoanthocyanins and related anthocyanins from Staghorn sumac (Rhus typhina L.) via UPLC–ESI-MS, 1H, 13C, and 2D NMR spectroscopy. Phytochemistry 94:284–293

    Article  CAS  PubMed  Google Scholar 

  • Kitahara K, Murai Y, Bang SW, Kitajima J, Iwashina T, Kaneko Y (2014) Anthocyanins from the flowers of Nagai Line of Japanese garden Iris (Iris ensata). Nat Prod Commun 9:1934578X1400900216.

  • Konczak I, Zhang W (2004) Anthocyanins—more than nature’s colours. J Biomed Biotechnol 2004:239

    Article  PubMed  PubMed Central  Google Scholar 

  • Kondo T, Hagihara S, Takaya Y, Yoshida K (2021) Polyacylated anthocyanins in bluish-purple petals of chinese bellflower, Platycodon grandiflorum. Int J Mol Sci 22:4044

    Article  CAS  PubMed  Google Scholar 

  • Kondo T, Toyama-Kato Y, Yoshida K (2005) Essential structure of co-pigment for blue sepal-color development of hydrangea. Tetrahedron Lett 46:6645–6649

    Article  CAS  Google Scholar 

  • Kong J-M, Chia L-S, Goh N-K, Chia T-F, Brouillard R (2003) Analysis and biological activities of anthocyanins. Phytochemistry 64:923–933

    Article  CAS  PubMed  Google Scholar 

  • Kuskoski EM, Vega JM, Rios JJ, Fett R, Troncoso AM, Asuero AG (2003) Characterization of anthocyanins from the fruits of baguaçu (Eugenia umbelliflora Berg). J Agric Food Chem 51:5450–5454

    Article  CAS  PubMed  Google Scholar 

  • Leonarski E, Kuasnei M, Moraes PAD, Cesca K, de Oliveira D, Zielinski AA (2023) Pressurized liquid extraction as an eco-friendly approach to recover anthocyanin from black rice bran. Innov Food Sci Emerg Technol 86:103372

    Article  CAS  Google Scholar 

  • Li Y, Li Z, Wang Y, Sun L, Pei H (2023) Anthocyanins/chitosan films doped by nano zinc oxide for active and intelligent packaging: comparison of anthocyanins source from purple tomato or black wolfberry. Front Chem Sci En 17:704–715

    Article  CAS  Google Scholar 

  • Lin Y, Wang C, Wang X, Yue M, Zhang Y, Chen Q, Li M, Luo Y, Zhang Y, Wang Y, Wang X (2021) Comparative transcriptome analysis reveals genes and pathways associated with anthocyanins in strawberry. J Berry Res 11:317–332

    Article  CAS  Google Scholar 

  • Liu S, Laaksonen O, Yang W, Zhang B, Yang B (2020) Pyranoanthocyanins in bilberry (Vaccinium myrtillus L.) wines fermented with Schizosaccharomyces pombe and their evolution during aging. Food Chem 305:125438.

    Article  CAS  PubMed  Google Scholar 

  • Mackon E, Mackon GCJDE, Guo Y, Ma Y, Yao Y, Liu P (2023) Development and application of CRISPR/Cas9 to improve anthocyanin pigmentation in plants: opportunities and perspectives. Plant Sci 333:111746

    Article  CAS  PubMed  Google Scholar 

  • Matera R, Gabbanini S, Berretti S, Amorati R, De Nicola GR, Iori R, Valgimigli L (2015) Acylated anthocyanins from sprouts of Raphanus sativus cv. Sango: isolation, structure elucidation and antioxidant activity. Food Chem 166:397–406

    Article  CAS  PubMed  Google Scholar 

  • Miyase T, Andoh T, Ueno A (1995) Linderniosides A and B, oleanane saponins from Lindernia pyxidaria. Phytochemistry 40:1499–1502

    Article  CAS  PubMed  Google Scholar 

  • Momose T (1977) 5-O-Methylcyanidin 3-glucoside from leaves of Egeria densa. Phytochemistry 16:1321

    Article  CAS  Google Scholar 

  • Monteiro M, Sampaio-Dias IE, Mateus N, de Freitas V, Cruz L (2022) Preparation of 10-(hexylcarbamoyl)pyranomalvidin-3-glucoside from 10-carboxypyranomalvidin-3-glucoside using carboiimide chemistry. Food Chem 393:133429

    Article  CAS  PubMed  Google Scholar 

  • Mora-Soumille N, Al Bittar S, Rosa M, Dangles O (2013) Analogs of anthocyanins with a 3′, 4′-dihydroxy substitution: synthesis and investigation of their acid–base, hydration, metal binding and hydrogen-donating properties in aqueous solution. Dye Pigment 96:7–15

    Article  CAS  Google Scholar 

  • Moriya C, Hosoya T, Agawa S, Sugiyama Y, Kozone I, Shin-Ya K, Terahara N, Kumazawa S (2015) New acylated anthocyanins from purple yam and their antioxidant activity. Biosci Biotechnol Biochem 79:1484–1492

    Article  CAS  PubMed  Google Scholar 

  • Nabavi SM, Šamec D, Tomczyk M, Milella L, Russo D, Habtemariam S, Suntar I, Rastrelli L, Daglia M, Xiao J, Giampieri F (2020) Flavonoid biosynthetic pathways in plants: versatile targets for metabolic engineering. Biotechnol Adv 38:107316

    Article  CAS  PubMed  Google Scholar 

  • Nabuurs MH, McCallum JL, Brown DC, Kirby CW (2017) NMR characterization of novel pyranoanthocyanins derived from the pulp of Panax quinquefolius L. (North American ginseng). Magn Reson Chem 55:177–182

    Article  CAS  PubMed  Google Scholar 

  • Nave F, Teixeira N, Mateus N, de Freitas V (2010) Hemisynthesis and structural characterization of flavanol-(4, 8)-vitisins by mass spectrometry. Rapid Commun Mass Spectrom 24:1964–1970

    Article  CAS  PubMed  Google Scholar 

  • Nazar MI, George TS, Muhammadaly SA, Kanoth BP, George N, Balachandrakurup V, Dominic MDC, Nair AJ (2023) Biodegradable pH sensor in packaging material using anthocyanin from banana bracts. Biomass Conv Bioref. https://doi.org/10.1007/s13399-023-04294-7

    Google Scholar 

  • Newsome AG, Culver CA, Van Breemen RB (2014) Nature’s palette: the search for natural blue colorants. J Agric Food Chem 62:6498–6511

    Article  CAS  PubMed  Google Scholar 

  • Oliveira J, Azevedo J, Silva AMS, Teixeira N, Cruz L, Mateus N, de Freitas V (2010) Pyranoanthocyanin dimers: a new family of turquoise blue anthocyanin-derived pigments found in port wine. J Agric Food Chem 58:5154–5159

    Article  CAS  PubMed  Google Scholar 

  • Oliveira J, Fernandes A, de Freitas V (2016) Synthesis and structural characterization by LC–MS and NMR of a new semi-natural blue amino-based pyranoanthocyanin compound. Tetrahedron Lett 57:1277–1281

    Article  CAS  Google Scholar 

  • Oliveira J, de Freitas V, Mateus N (2009) A novel synthetic pathway to vitisin B compounds. Tetrahedron Lett 50:3933–3935

    Article  CAS  Google Scholar 

  • Oliveira J, de Freitas V, Silva AMS, Mateus N (2007) Reaction between hydroxycinnamic acids and anthocyanin–pyruvic acid adducts yielding new portisins. J Agric Food Chem 55:6349–6356

    Article  CAS  PubMed  Google Scholar 

  • Oliveira J, Mateus N, Rodriguez-borges JE, Cabrita EJ, Silva AMS, de Freitas V (2011) Synthesis of a new pyranoanthocyanin dimer linked through a methyl-methine bridge. Tetrahedron Lett 52:2957–2960

    Article  CAS  Google Scholar 

  • Oliveira J, Santos-Buelga C, Silva AMS, de Freitas V, Mateus N (2006) Chromatic and structural features of blue anthocyanin-derived pigments present in Port wine. Anal Chim Acta 563:2–9

    Article  CAS  Google Scholar 

  • Ono E, Ruike M, Iwashita T, Nomoto K, Fukui Y (2010) Co-pigmentation and flavonoid glycosyltransferases in blue Veronica persica flowers. Phytochemistry 71:726–735

    Article  CAS  PubMed  Google Scholar 

  • Osorio C, Hurtado N, Dawid C, Hofmann T, Heredia-Mira FJ, Morales AL (2012) Chemical characterisation of anthocyanins in tamarillo (Solanum betaceum Cav.) and Andes berry (Rubus glaucus Benth.) fruits. Food Chem 132:1915–1921

    Article  CAS  Google Scholar 

  • Pazmiño-Durán EA, Giusti MM, Wrolstad RE, Glória MBA (2001) Anthocyanins from Oxalis triangularis as potential food colorants. Food Chem 75:211–216

    Article  Google Scholar 

  • Pina F (2014) Anthocyanins and related compounds. Detecting the change of regime between rate control by hydration or by tautomerization. Dye Pigment 102:308–314

    Article  CAS  Google Scholar 

  • Pina F, Melo MJ, Laia CAT, Parola AJ, Lima JC (2012) Chemistry and applications of flavylium compounds: a handful of colours. Chem Soc Rev 41:869–908

    Article  CAS  PubMed  Google Scholar 

  • Pina F, Oliveira J, de Freitas V (2015) Anthocyanins and derivatives are more than flavylium cations. Tetrahedron 71:3107–3114

    Article  CAS  Google Scholar 

  • Prior RL, Wu X (2006) Anthocyanins: structural characteristics that result in unique metabolic patterns and biological activities. Free Radic Res 40:1014–1028

    Article  CAS  PubMed  Google Scholar 

  • Quideau S, Deffieux D, Douat-Casassus C, Pouységu L (2011) Plant polyphenols: chemical properties, biological activities, and synthesis. Angew Chemie Int Ed 50:586–621

    Article  CAS  Google Scholar 

  • Raji M, El Foujji L, Mekhzoum MEM, EI Achaby M, Essabir H, Bouhfid R, el kacem Qaiss A (2022) pH-indicative Films Based on Chitosan–PVA/Sepiolite and Anthocyanin from Red Cabbage: Application in Milk Packaging. J Bionic Eng 19:837–851

    Article  Google Scholar 

  • Riaz M, Zia-Ul-Haq M, Saad B (2016) In: Anthocyanins and Human Health: Biomolecular and therapeutic aspects. Springer Briefs in Food, Health, and Nutrition. Springer, Cham.

  • Rosales TKO, Fabi JP (2022) Nanoencapsulated anthocyanin as a functional ingredient: technological application and future perspectives. Colloids Surf B 218:112707

    Article  CAS  Google Scholar 

  • Ren S, Jiménez-Flores R, Giusti MM (2021) The interactions between anthocyanin and whey protein: a review. Compr Rev Food Sci Food Saf 20:5992–6011

    Article  CAS  PubMed  Google Scholar 

  • Ruiz A, Mardones C, Vergara C, von Baer D, Gómez-Alonso S, Gómez MV, Hermosin-Gutierrez I (2014) Isolation and structural elucidation of anthocyanidin 3,7-β-O-diglucosides and caffeoyl-glucaric acids from calafate berries. J Agric Food Chem 62:6918–6925

    Article  CAS  PubMed  Google Scholar 

  • Saito N, Tatsuzawa F, Hongo A, Win KW, Yokoi M, Shigihara A, Honda T (1996) Acylated pelargonidin 3-sambubioside-5-glucosides in Matthiola incana. Phytochemistry 41:1613–1620

    Article  CAS  PubMed  Google Scholar 

  • Saito N, Tatsuzawa F, Toki K, Shinoda K, Shigihara A, Honda T (2011) The blue anthocyanin pigments from the blue flowers of Heliophila coronopifolia L. (Brassicaceae). Phytochemistry 72:2219–2229

    Article  CAS  PubMed  Google Scholar 

  • Saito N, Toki K, Honda T, Tatsuzawa F (2012) Floral pigments isolated from the sky-blue flowers of Oxypetalum caeruleum. Heterocycles 85:1427–1436

    Article  CAS  Google Scholar 

  • Sakaguchi K, Kitajima J, Iwashina T (2013) Acylated delphinidin glycosides from violet and violet-blue flowers of clematis cultivars and their coloration. Nat Prod Commun 8:1563–1566

    CAS  PubMed  Google Scholar 

  • Sánchez-Ilárduya MB, Sánchez-Fernández C, Viloria-Bernal M, López-Márquez DM, Berrueta LA, Gallo B, Vicente F (2012) Mass spectrometry fragmentation pattern of coloured flavanol-anthocyanin and anthocyanin-flavanol derivatives in aged red wines of Rioja. Aust J Grape Wine Res 18:203–214

    Article  Google Scholar 

  • Sendri N, Devidas SB, Katoch S, Patial V, Bhandari P (2020) Copigmentation and UPLC-ESI-MS/MS of anthocyanin in Ipomea nil as potential source of food colorant. Nat Prod Res 36:630–635

    Article  PubMed  Google Scholar 

  • Sendri N, Bhatt V, Singh S, Bhandari P (2022a) Impact of Chitosan-Prunus cerasoides gum exudates on the thermal properties, storage stability and antioxidant activity of anthocyanins from Berberis lycium Royle. Int J Food Sci Technol 57:995–1004

    Article  CAS  Google Scholar 

  • Sendri N, Singh S, Bhatt V, Bhatt P, Bhandari P (2022b) Valorization of red cabbage pomace for stabilization of anthocyanins in Rhododendron arboreum. Ind Crops Prod 187:115371

    Article  CAS  Google Scholar 

  • Sendri N, Singh S, Bhatt S, Gupta M, Bhandari P (2023a) Insight into the influence of oxygen, sunlight and temperature on the stability and color attributes of red cabbage anthocyanins and in vitro gastrointestinal behaviour. Food Chem Adv 3:100359

    Article  Google Scholar 

  • Sendri N, Singh S, Sharma B, Purohit R, Bhandari P (2023b) Effect of co-pigments on anthocyanins of Rhododendron arboreum and insights into interaction mechanism. Food Chem 426:136571

    Article  CAS  PubMed  Google Scholar 

  • Shimizu Y, Imada T, Zhang H, Tanaka R, Ohno T, Shimomura K (2010) Identification of novel poly-acylated anthocyanins from Gynura bicolor leaves and their antioxidative activity. Food Sci Technol Res 16:479–486

    Article  CAS  Google Scholar 

  • Sigurdson GT, Robbins RJ, Collins TM, Giusti MM (2017) Effects of hydroxycinnamic acids on blue color expression of cyanidin derivatives and their metal chelates. Food Chem 234:131–138

    Article  CAS  PubMed  Google Scholar 

  • Skaar I, Adaku C, Jordheim M, Byamukama R, Kiremire B, Andersen ØM (2014) Purple anthocyanin colouration on lower (abaxial) leaf surface of Hemigraphis colorata (Acanthaceae). Phytochemistry 105:141–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skaar I, Jordheim M, Byamukama R, Mbabazi A, Wubshet SG, Kiremire B, Andersen ØM (2012) New anthocyanidin and anthocyanin pigments from blue plumbago. J Agric Food Chem 60:1510–1515

    Article  CAS  PubMed  Google Scholar 

  • Sousa A, Araújo P, Mateus N, de Freitas V (2013) Deoxyvitisins: a new set of pyrano-3-deoxyanthocyanidins. Tetrahedron Lett 54:4785–4788

    Article  CAS  Google Scholar 

  • Sousa A, Mateus N, de Freitas V (2012) A novel reaction mechanism for the formation of deoxyanthocyanidins. Tetrahedron Lett 53:1300–1303

    Article  CAS  Google Scholar 

  • Strack D, Wray V, Metzger JW, Grosse W (1992) Two anthocyanins acylated with gallic acid from the leaves of Victoria amazonica. Phytochemistry 31:989–991

    Article  CAS  Google Scholar 

  • Sunil L, Shetty NP (2022) Biosynthesis and regulation of anthocyanin pathway genes. Appl Microbiol Biotechnol 106:1783–1798

    Article  CAS  PubMed  Google Scholar 

  • Tamura S, Tsuji K, Yongzhen P, Ohnishi-Kameyama M, Murakami N (2010) Six new acylated anthocyanins from red radish (Raphanus sativus). Chem Pharm Bull 58:1259–1262

    Article  CAS  Google Scholar 

  • Tang R, He Y, Fan K (2023) Recent advances in stability improvement of anthocyanins by efficient methods and its application in food intelligent packaging: a review. Food Biosci 56:103164

    Article  CAS  Google Scholar 

  • Tanikawa N, Honma K, Tatsuzawa F (2019) Flavonoids of the rose-pink, blue, and white flowers of Nigella damascena L.(Ranunculaceae). Sci Hortic 257:108609

    Article  CAS  Google Scholar 

  • Tarone AG, Cazarin CBB, Marostica Junior MR (2020) Anthocyanins: new techniques and challenges in microencapsulation. Food Res Int 133:109092

    Article  CAS  PubMed  Google Scholar 

  • Tatsuzawa F (2012) Acylated cyanidin 3-sambubioside-5-glucosides in the purple flowers of Hesperis matronalis L. (Brassicaceae). Biochem Syst Ecol 44:374–379

    Article  CAS  Google Scholar 

  • Tatsuzawa F (2013) 7-O-Methylpelargonidin glycosides from the pale red flowers of Catharanthus roseus. Nat Prod Commun 8:1934578X1300800816.

  • Tatsuzawa F (2014) Acylated cyanidin 3-sambubioside-5-glucosides from the purple-violet flowers of Matthiola longipetala subsp. bicornis (Sm) PW Ball. (Brassicaceae). Phytochem Lett 9:17–21

    Article  CAS  Google Scholar 

  • Tatsuzawa F (2015) Differences in the floral anthocyanin content of violet–blue flowers of Vinca minor L. and V. major L. (Apocynaceae). Phytochem Lett 13:365–369

    Article  CAS  Google Scholar 

  • Tatsuzawa F (2016) Acylated cyanidin 3-sophoroside-5-glucosides from the purple flowers of Raphanus sativus L. var. raphanistroides Makino (Brassicaceae). Phytochem Lett 17:282–287

    Article  CAS  Google Scholar 

  • Tatsuzawa F (2019) Acylated pelargonidin glycosides from the red-purple flowers of Iberis umbellata L. and the red flowers of Erysimum× cheiri (L.) Crantz (Brassicaceae). Phytochemistry 159:108–118

    Article  CAS  PubMed  Google Scholar 

  • Tatsuzawa F (2020) Flower colors and flavonoids in the cultivars of Lobelia erinus L.(Campanulaceae). Dye Pigment 180:108500

  • Tatsuzawa F (2023) Flower colors and anthocyanins in the cultivars of Campanula medium L. (Campanulaceae). Phytochemistry Letters 53:13–21

    Article  CAS  Google Scholar 

  • Tatsuzawa F, Hosokawa M (2015) Flower colors and their anthocyanins in Saintpaulia cultivars (Gesneriaceae). Hortic J 85:63–69

    Article  Google Scholar 

  • Tatsuzawa F, Norio S, Kazushi M, Masato Y, Atsushi S (2010a) Triacylated anthocyanidin 3-arabinosylglucoside-7, 3’-diglucosides isolated from the bluish flowers of Tradescantia virginiana cultivars and their distribution in the Tradescantieae. Heterocycles 81:2257–2267

    Article  CAS  Google Scholar 

  • Tatsuzawa F, Saito N, Shigihara A, Honda T, Toki K, Shinoda K, Yukawa T, Miyoshi K (2010b) An acylated cyanidin 3,7-diglucoside in the bluish flowers of Bletilla striata ‘Murasaki Shikibu’(Orchidaceae). J Japanese Soc Hortic Sci 79:215–220

    Article  CAS  Google Scholar 

  • Tatsuzawa F, Saito N, Toki K, Shinoda K, Shigihara A, Honda T (2010c) Acylated cyanidin 3-sophoroside-5-glucosides from the purple roots of red radish (Raphanus sativus L.)‘Benikanmi.’ J Japanese Soc Hortic Sci 79:103–107

    Article  CAS  Google Scholar 

  • Tatsuzawa F, Usuki R, Toki K, Saito N, Shinoda K, Shigihara A, Honda T (2010d) Acylated pelargonidin 3-sambubioside-5-glucosides from the red-purple flowers of Lobularia maritima. J Japanese Soc Hortic Sci 79:84–90

    Article  CAS  Google Scholar 

  • Tatsuzawa F, Aiba Y, Morino T, Saito N, Shinoda K, Kato K, Toki K, Honda T (2012a) Copigmentation with acylated anthocyanin and kaempferol glycosides in violet and purple flower cultivars of Aubrieta× cultorum (Brassicaceae). J Japanese Soc Hortic Sci 81:275–284

    Article  CAS  Google Scholar 

  • Tatsuzawa F, Ito K, Muraoka H, Namauo T, Kato K, Takahata Y, Ogawa S (2012b) Triacylated peonidin 3-sophoroside-5-glucosides from the purple flowers of Moricandia ramburii Webb. Phytochemistry 76:73–77

    Article  CAS  PubMed  Google Scholar 

  • Tatsuzawa F, Hosokawa M, Saito N, Honda T (2012c) Three acylated anthocyanins and a flavone glycoside in violet-blue flowers of Saintpaulia ‘Thamires.’ South African J Bot 79:71–76

    Article  CAS  Google Scholar 

  • Tatsuzawa F, Saito N, Toki K, Shinoda K, Honda T (2012d) Flower colors and their anthocyanins in Matthiola incana cultivars (Brassicaceae). J Japanese Soc Hortic Sci 81:91–100

    Article  CAS  Google Scholar 

  • Tatsuzawa F, Ito S, Sato M, Muraoka H, Kato K, Takahata Y, Ogawa S (2013) A tetra-acylated cyanidin 3-sophoroside-5-glucoside from the purple-violet flowers of Moricandia arvensis (L.) DC. (Brassicaceae). Phytochem Lett 6:170–173

    Article  CAS  Google Scholar 

  • Tatsuzawa F, Saito N, Yukawa T, Honda T, Shinoda K, Kato K, Miyoshi K (2014a) Acylated cyanidin 3,7-diglucosides in the red-purple flowers of Sophronitis wittigiana (Orchidaceae). J Japanese Soc Hortic Sci 83:64–71

    Article  CAS  Google Scholar 

  • Tatsuzawa F, Takahashi N, Kato K, Shinoda K, Saito N, Honda T (2014b) Acylated cyanidin glycosides from the pale-violet flowers of Ionopsidium acaule (Desf.) Rchb. (Brassicaceae). Phytochem Lett 7:69–76

    Article  CAS  Google Scholar 

  • Tatsuzawa F, Toki K, Ohtani Y, Kato K, Saito N, Honda T, Mii M (2014c) Floral pigments from the blue flowers of Nemophila menziesii ‘Insignis Blue’and the purple flower of its variants. J Japanese Soc Hortic Sci 83:259–266

    Article  CAS  Google Scholar 

  • Tatsuzawa F, Hatakeyama N, Takehara A, Nakajo S, Muraoka H, Ogawa S, Takahata Y, Kato K (2015a) Acylated anthocyanins in flowers of Moricandia DC. (Brassicaceae). Biochem Syst Ecol 58:38–42

    Article  CAS  Google Scholar 

  • Tatsuzawa F, Matsuda S, Kato K, Hosokawa M (2015b) Acetylated anthocyanidin 3-O-di-glycosides in red-purple flowers and grayed-purple leaves of Saintpaulia ‘Tomoko.’ Hortic J 84:77–82

    Article  CAS  Google Scholar 

  • Tatsuzawa F, Kato K, Sato M, Ito S, Muraoka H, Takahata Y, Ogawa S (2015c) Acylated cyanidin 3-sophoroside-5-glucoside in purple-violet flowers of Moricandia arvensis (Brassicaceae). Nat Prod Commun 10:1934578X1501000321.

  • Tatsuzawa F, Yamamoto H, Tsuda A, Shono H, Kato K (2015d) Flower colors and pigments in the cultivars of Catharanthus roseus. Hortic Res 14:221–230

    Article  CAS  Google Scholar 

  • Tatsuzawa F, Mizuno T, Kikuchi R, Kato K, Ota T, Murai Y, Yangzom R, Iwashina T (2021) Flavonoids in the flowers of Primula ×polyantha Mill. and Primula primulina (Spreng.) H. Hara (Primulaceae). Phytochemistry 189:112827.

  • Toki K, Saito N, Nogami A (2009) Flavonoid glycosides isolated from the blue flowers of Nigella damascena. Heterocycles 78:2287–2294

    Article  CAS  Google Scholar 

  • Toki K, Saito N, Kitaura M (2011) 7-O-Methylated anthocyanidin glycosides from the reddish purple flowers of Catharanthus Roseus’equator Lavender’. Heterocycles 83:2803–2810

    Article  CAS  Google Scholar 

  • Toki K, Saito N, Shigihara A, Honda T (2003) Acylated cyanidin glycosides from the purple-red flowers of Anemone coronaria. Heterocycles-Sendai Inst Heterocycl Chem 60:345–350

    CAS  Google Scholar 

  • Trouillas P, Sancho-García JC, De Freitas V, Gierschner J, Otyepka M, Dangles O (2016) Stabilizing and modulating color by copigmentation: insights from theory and experiment. Chem Rev 116:4937–4982

    Article  CAS  PubMed  Google Scholar 

  • Tsao R, McCallum J (2010) In: de la Rosa L, Alvarez-Parrilla E, González-Aguilar GA (ed) Fruit and vegetable phytochemicals:chemistry, nutritional value, and stability. Black publishing, Wiley, New York.

  • Veitch NC, Grayer RJ (2011) Flavonoids and their glycosides, including anthocyanins. Nat Prod Rep 28:1626–1695

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Cao G, Prior RL (1997) Oxygen radical absorbing capacity of anthocyanins. J Agric Food Chem 45:304–309

    Article  CAS  Google Scholar 

  • Williams CA, Grayer RJ (2004) Anthocyanins and other flavonoids. Nat Prod Rep 21:539–573

    Article  CAS  PubMed  Google Scholar 

  • Wrolstad RE, Durst RW, Lee J (2005) Tracking color and pigment changes in anthocyanin products. Trends Food Sci Technol 16:423–428

    Article  CAS  Google Scholar 

  • Wu T, McCallum JL, Wang S, Liu R, Zhu H, Tsao R (2013) Evaluation of antioxidant activities and chemical characterisation of staghorn sumac fruit (Rhus hirta L.). Food Chem 138:1333–1340

    Article  CAS  PubMed  Google Scholar 

  • Xia D, Zhou H, Wang Y, Li P, Fu P, Wu B, He Y (2021) How rice organs are colored: the genetic basis of anthocyanin biosynthesis in rice. Crop J 9:598–608

    Article  Google Scholar 

  • Xie DW, Jing LI, Zhang XY, Dai ZG, Zhou WZ, Su JG, Jian SUN (2023) Systematic analysis of MYB transcription factors and the role of LuMYB216 in regulating anthocyanin biosynthesis in the flowers of flax (Linum usitatissimum L.). J Integr Agric. https://doi.org/10.1016/j.jia.2023.04.046.

  • Xiong Y, Zhang P, Warner RD, Fang Z (2019) 3-Deoxyanthocyanidin colorant: nature, health, synthesis, and food applications. Compr Rev Food Sci Food Saf 18:1533–1549

    Article  CAS  PubMed  Google Scholar 

  • Yoshida K, Tojo K, Mori M, Yamashita K, Kitahara S, Noda M, Uchiyama S (2015) Chemical mechanism of petal color development of Nemophila menziesii by a metalloanthocyanin, nemophilin. Tetrahedron 71:9123–9130

    Article  CAS  Google Scholar 

  • Yoshitama K, Kaneshige M, Ishikura N, Araki F, Yahara S, Abe K (1994) A stable reddish purple anthocyanin in the leaf of Gynura aurantiaca cv.[Compositae]" Purple passion". J Plant Res 179:209–214

    Article  Google Scholar 

  • Zhang J, Luo C, Zhou Q, Zhang Z (2018) Isolation and identification of two major acylated anthocyanins from purple sweet potato (Ipomoea batatas L. cultivar Eshu No. 8) by UPLC-QTOF-MS/MS and NMR. Int J Food Sci Technol 53:1932–1941.

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang C, Zihan L, Zeng C, Zhen X, Erwei L, Gnag L, Juan L, Shen G, Xu C, Wang Y, Ma B, Zhang H, Guo B (2022) New 8-prenylated quercetin glycosides from the flowers of Epimedium acuminatum and their testosterone production-promoting activities. Front Chem 10:1014110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao C-L, Yu Y-Q, Chen Z-J, Wen G-S, Wei F-G, Zheng Q, Wang C-D, Xiao X-L (2017) Stability-increasing effects of anthocyanin glycosyl acylation. Food Chem 214:119–128

    Article  CAS  PubMed  Google Scholar 

  • Zhu H, Zhang T-J, Zheng J, Huang X-D, Yu Z-C, Peng C-L, Chow WS (2018) Anthocyanins function as a light attenuator to compensate for insufficient photoprotection mediated by nonphotochemical quenching in young leaves of Acmena acuminatissima in winter. Photosynthetica 56:445–454

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India, for their support. CSIR-IHBT communication number for this manuscript is 5256.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pamita Bhandari.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in the article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sendri, N., Bhandari, P. Anthocyanins: a comprehensive review on biosynthesis, structural diversity, and industrial applications. Phytochem Rev (2024). https://doi.org/10.1007/s11101-024-09945-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11101-024-09945-9

Keywords

Navigation