Skip to main content

Advertisement

Log in

Is telomerase a hidden player? Therapeutic potential of natural telomerase activators against age-related diseases

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

There is a huge demand for novel treatment and/or prevention approaches for age-related diseases, which reduce life quality and one of the main reasons for death worldwide. Many age-related diseases were found to be associated with dysfunctional telomeres, which accelerate aging process due to the decrease in repair potential of tissues. An enzyme called telomerase is mainly responsible for keeping telomeres healthful. In the last two decades, the progress in the field, including in vitro studies, preclinical data, and human trials, demonstrated that telomerase and related genes might be powerful targets for the treatment of those diseases. Considering telomerase reactivation as a treatment strategy in age-related degenerative diseases, telomerase activators obtained from natural products stand out as promising agents. Although various research showed that those activators have protective/therapeutic activity against age-related diseases, the role of telomerase activation is often neglected in studies. In this context, we focused on the natural products as telomerase activator and their activities on age-related diseases, specifically neurodegenerative, cardiovascular, and osteodegenerative disorders, in which telomere dysfunction plays a causal role. Thus, this review aims to draw attention to the possibility of telomerase activation in therapy, in which some well-known natural products such as telomerase activators might play a role.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

6-OHDA:

6-Hydroxydopamine

AAV:

Adeno-associated virus

AD:

Alzheimer’s disease

AD-MSC:

Adipose derived-MSC

Akt:

Protein kinase B

ALS:

Amyotrophic lateral sclerosis

AMPK:

AMP-activated protein kinase

AQPs:

Aquaporins

ARE:

Antioksidant response element

AST IV:

Astragaloside IV

Aβ:

Amyloid-beta peptide

BM-MSC:

Bone marrow-derived-MSC

CA:

Cycloastragenol

CAE:

Centella asiatica extract

CNS:

Central nervous system

CREB:

CAMP response element binding protein

EGFR:

Epidermal growth factor receptor

ERK:

Ras-extracellular signal-regulated kinase

ESC:

Embryonic stem cell

GABA:

Gamma-aminobutyric acid

GBE:

Ginkgo biloba extract

GSH:

Glutathione

HD:

Huntington’s disease

HIF-1α:

Hypoxia-inducible factor-1α

HO-1:

Heme oxygenase 1

HT22:

Mouse hippocampal neuronal cells

iPSC:

Induced pluripotent stem cell

IS:

Ischemic stroke

MMP-9:

Metalloprotein-9

MS:

Multiple sclerosis

MSC:

Mesenchymal stem cell

mTOR:

Mammalian target of rapamycin

NF-κB:

Nuclear factor kappa B

NPC:

Neural stem/precursor cell

Nrf2:

Nuclear factor erythroid 2‐related factor 2

OAC:

Oleanolic acid

PD:

Parkinson’s disease

PHF:

Paired helical filaments

PI3K:

Phosphatidylinositol 3-kinase

PNS:

Peripheral nervous system

ROS:

Reactive oxygen species

SCI:

Spinal cord injury

SIRT1:

Member of sirtuin family

STAT:

Signal transducers and activators of transcription

TBI:

Traumatic brain injury

TERC:

Telomerase RNA subunit

TERT:

Telomerase catalytic subunit

TH:

Tyrosine hydroxylase

TL:

Telomere length

UC-MSC:

Umbilical cord-derived-MSC

References

  • Abo-Salem OM et al (2014) Curcumin ameliorates streptozotocin-induced heart injury in rats. J Biochem Mol Toxicol 28(6):263–270

    Article  CAS  PubMed  Google Scholar 

  • Agliardi C et al (2022) Alpha-synuclein as a biomarker in Parkinson’s disease: focus on neural derived extracelluar vesicles. Neural Regen Res 17(7):1503–1504

    Article  PubMed  Google Scholar 

  • Ahmed T, Enam SA, Gilani AH (2010) Curcuminoids enhance memory in an amyloid-infused rat model of Alzheimer’s disease. Neuroscience 169(3):1296–1306

    Article  CAS  PubMed  Google Scholar 

  • Ait-Aissa K et al (2019) Telomerase deficiency predisposes to heart failure and ischemia-reperfusion injury. Front Cardiovasc Med 6:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amaya-Montoya M et al (2020) Cellular senescence as a therapeutic target for age-related diseases: a review. Adv Ther 37(4):1407–1424

    Article  PubMed  PubMed Central  Google Scholar 

  • Ameen O, Yassien RI, Naguib YM (2020) Activation of FoxO1/SIRT1/RANKL/OPG pathway may underlie the therapeutic effects of resveratrol on aging-dependent male osteoporosis. BMC Musculoskel Disord 21(1):1–14

    Article  Google Scholar 

  • Annapurna A, Ansari M, Manjunath PM (2013) Partial role of multiple pathways in infarct size limiting effect of quercetin and rutin against cerebral ischemia-reperfusion injury in rats. Eur Rev Med Pharmacol Sci 17(4):491–500

    CAS  PubMed  Google Scholar 

  • Armanios M, Blackburn EH (2012) The telomere syndromes. Nat Rev Genet 13(10):693–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aslanipour B et al (2017) Secondary metabolites from Astragalus karjaginii BORISS and the evaluation of their effects on cytokine release and hemolysis. Fitoterapia 122:26–33

    Article  CAS  PubMed  Google Scholar 

  • Aziz NA, Weydt P (2018) Telomere length as a modifier of age-at-onset in Huntington disease: a two-sample Mendelian randomization study. J Neurol 265(9):2149–2151

    Article  CAS  PubMed  Google Scholar 

  • Bachhav SS et al (2011) Oleanolic acid prevents glucocorticoid-induced hypertension in rats. Phytother Res 25(10):1435–1439

    Article  CAS  PubMed  Google Scholar 

  • Bachhav SS et al (2014) Oleanolic acid prevents increase in blood pressure and nephrotoxicity in nitric oxide dependent type of hypertension in rats. Pharmacogn Res 7(4):385–392

    Google Scholar 

  • Badore NS et al (2017) Role of Ginkgo biloba extract, against isoproterenol induced cardiac toxicity in rats. Indian J Pharm Educ Res 51(4):691–699

    Article  Google Scholar 

  • Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5(6):493

    Article  CAS  PubMed  Google Scholar 

  • Benameur T et al (2022) New promising therapeutic avenues of Curcumin in brain diseases. Molecules 27(1):236

    Article  CAS  Google Scholar 

  • Benazzo F et al (2016) A multi-centre, open label, long-term follow-up study to evaluate the benefits of a new viscoelastic hydrogel (Hymovis®) in the treatment of knee osteoarthritis. Eur Rev Med Pharmacol Sci 20(5):959–968

    CAS  PubMed  Google Scholar 

  • Bernadotte A, Mikhelson VM, Spivak IM (2016) Markers of cellular senescence. Telomere shortening as a marker of cellular senescence. Aging 8(1):3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardes de Jesus B, Schneeberger K, Vera E, Tejera A, Harley CB, Blasco MA (2011) The telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without increasing cancer incidence. Aging Cell 10(4):604–621

    Article  CAS  PubMed  Google Scholar 

  • Bhatt SR, Lokhandwala MF, Banday AA (2011) Resveratrol prevents endothelial nitric oxide synthase uncoupling and attenuates development of hypertension in spontaneously hypertensive rats. Eur J Pharmacol 667(1):258–264

    Article  CAS  PubMed  Google Scholar 

  • Blinova EA et al (2016) Telomere Length of Individual Chromosomes in Patients with Rheumatoid Arthritis. Bull Exp Biol Med 160(6):779–782

    Article  CAS  PubMed  Google Scholar 

  • Bonnefont-Rousselot DJN (2016) Resveratrol and cardiovascular diseases. Nutrients 8(5):250

    Article  PubMed  PubMed Central  Google Scholar 

  • Borghi SM et al (2018) The flavonoid quercetin inhibits titanium dioxide (TiO2)-induced chronic arthritis in mice. J Nutr Biochem 53:81–95

    Article  CAS  PubMed  Google Scholar 

  • Brinkley TE et al (2010) Effect of ginkgo biloba on blood pressure and incidence of hypertension in elderly men and women. Am J Hypertens 23(5):528–533

    Article  PubMed  Google Scholar 

  • Brouilette S et al (2003) White cell telomere length and risk of premature myocardial infarction. Arterioscler Thromb Vasc Biol 23(5):842–846

    Article  CAS  PubMed  Google Scholar 

  • Caltana L et al (2014) Further evidence for the neuroprotective role of oleanolic acid in a model of focal brain hypoxia in rats. Neurochem Int 79:79–87

    Article  CAS  PubMed  Google Scholar 

  • Calvin BH (2005) Telomerase therapeutics for degenerative diseases. Curr Mol Med 5(2):205–211

    Article  Google Scholar 

  • Cao X et al (2014) Resveratrol prevents AngII-induced hypertension via AMPK activation and RhoA/ROCK suppression in mice. Hypertens Res 37(9):803–810

    Article  CAS  PubMed  Google Scholar 

  • Cao S et al (2018) Oleanolic acid exerts osteoprotective effects and modulates vitamin D metabolism. Nutrients 10(2):247

    Article  PubMed  PubMed Central  Google Scholar 

  • Cao S et al (2018) Oleanolic acid and ursolic acid improve bone properties and calcium balance and modulate vitamin D metabolism in aged female rats. Front Pharmacol 9:1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Q et al (2018) Dickkopf-3 upregulation mediates the cardioprotective effects of curcumin on chronic heart failure. Mol Med Rep 17(5):7249–7257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cao Y et al (2019) The potential role of cycloastragenol in promoting diabetic wound repair in vitro. BioMed Res Int 2019

  • Castellano JM et al (2019) Oleanolic acid exerts a neuroprotective effect against microglial cell activation by modulating cytokine release and antioxidant defense systems. Biomolecules 9(11):683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakravarti D, LaBella KA, DePinho RA (2021) Telomeres: history, health, and hallmarks of aging. Cell 184(2):306–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Zhan Y (2021) Association between telomere length and Parkinson’s disease: a Mendelian randomization study. Neurobiol Aging 97:144.e9-144.e11

    Article  CAS  PubMed  Google Scholar 

  • Chen YR et al (2008) Resveratrol attenuates ventricular arrhythmias and improves the long-term survival in rats with myocardial infarction. Cardiovasc Drugs Ther 22(6):479–485

    Article  CAS  PubMed  Google Scholar 

  • Chen YJ et al (2013) EGb761 inhibits inflammatory responses in human chondrocytes and shows chondroprotection in osteoarthritic rat knee. J Orthop Res 31(7):1032–1038

    Article  PubMed  Google Scholar 

  • Chen Z et al (2016) Curcumin alleviates glucocorticoid-induced osteoporosis through the regulation of the Wnt signaling pathway. Int J Mol Med 37(2):329–338

    Article  PubMed  Google Scholar 

  • Chen H-W et al (2021) Natural products of pharmacology and mechanisms in nucleus pulposus cells and intervertebral disc degeneration. Evid-Based Complem Altern Med 2021

  • Cheng L et al (2015) Resveratrol attenuates inflammation and oxidative stress induced by myocardial ischemia-reperfusion injury: role of Nrf2/ARE pathway. Int J Clin Exp Med 8(7):10420

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng L et al (2015) Resveratrol attenuates inflammation and oxidative stress induced by myocardial ischemia-reperfusion injury: role of Nrf2/ARE pathway. Int J Clin Exp Med 8(7):10420–10428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng S et al (2019) Astragaloside IV exerts angiogenesis and cardioprotection after myocardial infarction via regulating PTEN/PI3K/Akt signaling pathway. Life Sci 227:82–93

    Article  CAS  PubMed  Google Scholar 

  • Chiu CL et al (2016) Does telomere shortening precede the onset of hypertension in spontaneously hypertensive mice? Twin Res Human Genet 19(5):422–429

    Article  Google Scholar 

  • Chongtham A, Agrawal N (2016) Curcumin modulates cell death and is protective in Huntington’s disease model. Sci Rep 6:18736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung SA et al (2007) Nucleus pulposus cellular longevity by telomerase gene therapy. Spine 32(11):1188–1196

    Article  PubMed  Google Scholar 

  • Collins K, Mitchell JRJO (2002) Telomerase in the human organism. Oncogene 21(4):564–579

    Article  CAS  PubMed  Google Scholar 

  • Corpas R et al (2019) Resveratrol induces brain resilience against Alzheimer neurodegeneration through proteostasis enhancement. Mol Neurobiol 56(2):1502–1516

    Article  CAS  PubMed  Google Scholar 

  • Csiszar A et al (2009) Resveratrol prevents monocrotaline-induced pulmonary hypertension in rats. Hypertension 54(3):668–675

    Article  CAS  PubMed  Google Scholar 

  • Dai Q, Di Zhou LX, Song X (2018) Curcumin alleviates rheumatoid arthritis-induced inflammation and synovial hyperplasia by targeting mTOR pathway in rats. Drug Des Dev Ther 12:4095

    Article  CAS  Google Scholar 

  • Dastani M et al (2019) The effects of curcumin on the prevention of atrial and ventricular arrhythmias and heart failure in patients with unstable angina: a randomized clinical trial. Avicenna J Phytomed 9(1):1–9

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Alcântara GFT et al (2017) Curcumin reverses neurochemical, histological and immuno-histochemical alterations in the model of global brain ischemia. J Trad Complement Med 7(1):14–23

    Article  Google Scholar 

  • de Jesus BB et al (2011) The telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without increasing cancer incidence. Aging Cell 10(4):604–621

    Article  Google Scholar 

  • Dolinsky VW et al (2013) Resveratrol prevents hypertension and cardiac hypertrophy in hypertensive rats and mice. Biochim Biophys Acta (BBA): Mol Basis of Dis 1832(10):1723–1733

    Article  CAS  Google Scholar 

  • Dong XX et al (2007) Ginkgo biloba extract reduces endothelial progenitor-cell senescence through augmentation of telomerase activity. J Cardiovasc Pharmacol 49(2):111–115

    Article  CAS  PubMed  Google Scholar 

  • Dong W et al (2008) Resveratrol attenuates ischemic brain damage in the delayed phase after stroke and induces messenger RNA and protein express for angiogenic factors. J Vasc Surg 48(3):709–714

    Article  PubMed  Google Scholar 

  • Du SJ et al (2021) Astragaloside IV attenuates cerebral ischemia-reperfusion injury in rats through the inhibition of calcium-sensing receptor-mediated apoptosis. Int J Mol Med 47(1):302–314

    Article  CAS  PubMed  Google Scholar 

  • Duman S et al (2021) Telomerase activators from 20 (27)-octanor-cycloastragenol via biotransformation by the fungal endophytes. Bioorg Chem 109:104708

    Article  CAS  PubMed  Google Scholar 

  • Ekiz GN et al (2019) Microbial transformation of cycloastragenol and astragenol by endophytic fungi isolated from astragalus species. J Nat Prod 82(11):2979–2985

    Article  CAS  PubMed  Google Scholar 

  • Elifani F et al (2019) Curcumin dietary supplementation ameliorates disease phenotype in an animal model of Huntington’s disease. Hum Mol Genet 28(23):4012–4021

    CAS  PubMed  Google Scholar 

  • Epel ES et al (2009) The rate of leukocyte telomere shortening predicts mortality from cardiovascular disease in elderly men. Aging (Albany NY) 1(1):81

    Article  CAS  Google Scholar 

  • Fang L et al (2015) Resveratrol alleviates nerve injury after cerebral ischemia and reperfusion in mice by inhibiting inflammation and apoptosis. Int J Clin Exp Med 8(3):3219–3226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fathizad F et al (2019) The effect of astragaloside iv on isoproterenol-induced myocardial infarction in rats. Pharm Sci 25(2):100–110

    Article  Google Scholar 

  • Feng C et al (2016) Disc cell senescence in intervertebral disc degeneration: causes and molecular pathways. Cell Cycle 15(13):1674–1684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng L et al (2019) Resveratrol protects against isoproterenol induced myocardial infarction in rats through VEGF-B/AMPK/eNOS/NO signalling pathway. Free Rad Res 53(1):82–93

    Article  CAS  Google Scholar 

  • Feng K et al. Curcumin inhibits the PERK-eIF2α-CHOP pathway through promoting SIRT1 expression in oxidative stress-induced rat chondrocytes and ameliorates osteoarthritis progression in a rat model. Oxida Med Cell Longev 2019

  • Ferreira AC et al (2020) Dose-related effects of resveratrol in different models of pulmonary arterial hypertension: a systematic review. Curr Cardiol Rev 16(3):231–240

    Article  PubMed  PubMed Central  Google Scholar 

  • Fitzpatrick AL et al (2007) Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol 165(1):14–21

    Article  PubMed  Google Scholar 

  • Fragkiadaki P et al (2020) Telomere length and telomerase activity in osteoporosis and osteoarthritis (review). Exp Ther Med 19(3):1626–1632

    CAS  PubMed  Google Scholar 

  • Gal R et al (2020) Resveratrol improves heart function by moderating inflammatory processes in patients with systolic heart failure. Antioxidants 9(11):1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gamal RM et al (2018) Telomere dysfunction-related serological markers and oxidative stress markers in rheumatoid arthritis patients: correlation with diseases activity. Clin Rheumatol 37(12):3239–3246

    Article  PubMed  Google Scholar 

  • Gao L et al (2017) Nrf2 activation by curcumin improves exercise performance of mice with chronic heart failure. FASEB J 31:1020.15-1020.15

    Google Scholar 

  • Gao J, Zhang Q, Song L (2018) Resveratrol enhances matrix biosynthesis of nucleus pulposus cells through activating autophagy via the PI3K/Akt pathway under oxidative damage. Biosci Rep 38(4):BSR20180544

    Article  PubMed  PubMed Central  Google Scholar 

  • García-Saura MF et al (2005) Effects of chronic quercetin treatment in experimental renovascular hypertension. Mol Cell Biochem 270(1):147–155

    Article  PubMed  Google Scholar 

  • Geng L et al (2019) Chemical screen identifies a geroprotective role of quercetin in premature aging. Protein Cell 10(6):417–435

    Article  CAS  PubMed  Google Scholar 

  • George B et al (2018) Donor Telomere length influences engraftment and outcome in aplastic anemia patients undergoing matched related stem cell transplantation. Biol Blood Marrow Trans 24(3):S294–S295

    Article  Google Scholar 

  • Gnanapragasam A et al (2007) Adriamycin induced myocardial failure in rats: protective role of centella asiatica. Mol Cell Biochem 294(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Gorbunov N et al (2012) Regeneration of infarcted myocardium with resveratrol-modified cardiac stem cells. J Cell Mol Med 16(1):174–184

    Article  CAS  PubMed  Google Scholar 

  • Gray NE et al (2018a) Centella asiatica attenuates hippocampal mitochondrial dysfunction and improves memory and executive function in β-amyloid overexpressing mice. Mol Cell Neurosci 93:1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray NE et al (2018b) Centella asiatica increases hippocampal synaptic density and improves memory and executive function in aged mice. Brain Behav 8(7):e01024

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu X et al (2014) Resveratrol, an activator of SIRT1, upregulates AMPK and improves cardiac function in heart failure. Genet Mol Res 13(1):323–335

    Article  CAS  PubMed  Google Scholar 

  • Gu J et al (2021) Neuroprotective Effect of trans-resveratrol in mild to moderate Alzheimer disease: a randomized double-blind trial. Neurol Ther 10(2):905–917

    Article  PubMed  PubMed Central  Google Scholar 

  • Günes C, Rudolph KL (2013) The role of telomeres in stem cells and cancer. Cell 152(3):390–393

    Article  PubMed  Google Scholar 

  • Guo YJ et al (2016) Resveratrol alleviates MPTP-induced motor impairments and pathological changes by autophagic degradation of α-synuclein via SIRT1-deacetylated LC3. Mol Nutr Food Res 60(10):2161–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta PK et al (2014) Protective effect of resveratrol against pressure overload-induced heart failure. Food Sci Nutr 2(3):218–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gurusamy N et al (2010) Red wine antioxidant resveratrol-modified cardiac stem cells regenerate infarcted myocardium. J Cell Mol Med 14(9):2235–2239

    Article  PubMed  PubMed Central  Google Scholar 

  • Haiyan H et al (2016) Effect of astragaloside IV on neural stem cell transplantation in Alzheimer’s disease rat models. Evid-Based Complement Altern Med 2016:3106980

    Article  Google Scholar 

  • Han Y et al (2019) Curcumin attenuates migration of vascular smooth muscle cells via inhibiting NFkappaB-mediated NLRP3 expression in spontaneously hypertensive rats. J Nutr Biochem 72:108212

    Article  CAS  PubMed  Google Scholar 

  • Harbo M et al (2012) The distribution pattern of critically short telomeres in human osteoarthritic knees. Arthritis Res Ther 14(1):1–9

    Article  Google Scholar 

  • Harikumar KB, Aggarwal BB (2008) Resveratrol: a multitargeted agent for age-associated chronic diseases. Cell Cycle 7(8):1020–1035

    Article  CAS  PubMed  Google Scholar 

  • Harley CB et al (2011) A natural product telomerase activator as part of a health maintenance program. Rejuvenation Res 14(1):45–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haycock PC et al (2014) Leucocyte telomere length and risk of cardiovascular disease: systematic review and meta-analysis 349

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25(3):585–621

    Article  CAS  PubMed  Google Scholar 

  • Heidari S et al (2020) Recent advances in neurogenic and neuroprotective effects of curcumin through the induction of neural stem cells. Biotechnol Appl Biochem n/a(n/a)

  • Hong H et al (2021) Cycloastragenol and Astragaloside IV activate telomerase and protect nucleus pulposus cells against high glucose-induced senescence and apoptosis. Exp Ther Med 22(5):1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou G et al (2014) Oxidative stress participates in age-related changes in rat lumbar intervertebral discs. Arch Gerontol Geriatr 59(3):665–669

    Article  CAS  PubMed  Google Scholar 

  • Hou Y et al (2018) Resveratrol provides neuroprotection by regulating the JAK2/STAT3/PI3K/AKT/mTOR pathway after stroke in rats. Genes Dis 5(3):245–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou Y et al (2019) Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 15(10):565–581

    Article  PubMed  Google Scholar 

  • Hu J et al (2017) Curcumin modulates covalent histone modification and TIMP1 gene activation to protect against vascular injury in a hypertension rat model. Exp Ther Med 14(6):5896–5902

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H-C et al (2014) Curcumin attenuates amyloid-β-induced tau hyperphosphorylation in human neuroblastoma SH-SY5Y cells involving PTEN/Akt/GSK-3β signaling pathway. J Recept Signal Transduct 34(1):26–37

    Article  Google Scholar 

  • Hunter DJ, Bierma-Zeinstra S (2019) Osteoarthritis. Lancet 393(10182):1745–1759

    Article  CAS  PubMed  Google Scholar 

  • Hussin HM et al (2020) Centella asiatica (L.)-neurodifferentiated mesenchymal stem cells promote the regeneration of peripheral nerve. Tissue Eng Regen Med 17(2):237–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikram M et al (2021) Cycloastragenol, a triterpenoid saponin, regulates oxidative stress, neurotrophic dysfunctions, neuroinflammation and apoptotic cell death in neurodegenerative conditions. Cells 10(10):2719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Intharachatorn T, Srisawat R (2013) Antihypertensive effects of Centella asiatica extract. In: International conference on food and agricultural sciences

  • Ivankovic M et al (2007) Telomerase activity in HeLa cervical carcinoma cell line proliferation. Biogerontology 8(2):163–172

    Article  CAS  PubMed  Google Scholar 

  • Jacobs BP, Browner WS (2000) Ginkgo biloba: a living fossil. Am J Med 108(4):341–342

    Article  CAS  PubMed  Google Scholar 

  • Jahan I, Nayeem SM (2021) Destabilization of Alzheimer’s Aβ42protofibrils with acyclovir, carmustine, curcumin, and tetracycline: insights from molecular dynamics simulations. New J Chem 45(45):21031–21048

    Article  CAS  Google Scholar 

  • Jaskelioff M et al (2011) Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature 469(7328):102–106

    Article  CAS  PubMed  Google Scholar 

  • Javanmard MZ et al (2019) Curcumin improves the efficacy of BMSCs in myocardial ischemia injury in rat 21(9)

  • Javkhedkar AA et al (2015) Resveratrol restored Nrf2 function, reduced renal inflammation, and mitigated hypertension in spontaneously hypertensive rats. Am J Physiol-Regul Integr Comp Physiol 308(10):R840–R846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon SJ et al (2017) Oleanolic acid ameliorates cognitive dysfunction caused by cholinergic blockade via TrkB-dependent BDNF signaling. Neuropharmacology 113:100–109

    Article  CAS  PubMed  Google Scholar 

  • Jhang KA et al (2017) Resveratrol ameliorates tau hyperphosphorylation at Ser396 site and oxidative damage in rat hippocampal slices exposed to vanadate: implication of ERK1/2 and GSK-3β signaling cascades. J Agric Food Chem 65(44):9626–9634

    Article  CAS  PubMed  Google Scholar 

  • Jiang M et al (2019) Astragaloside IV attenuates myocardial ischemia-reperfusion injury from oxidative stress by regulating succinate, lysophospholipid metabolism, and ROS scavenging system 2019

  • Jin Z et al (2019) Quercetin improves blood-brain barrier dysfunction in rats with cerebral ischemia reperfusion via Wnt signaling pathway. Am J Trans Res 11(8):4683–4695

    CAS  Google Scholar 

  • Ju Y, Tam K (2022) Pathological mechanisms and therapeutic strategies for Alzheimer’s disease. Neural Regen Res 17(3):543–549

    Article  CAS  PubMed  Google Scholar 

  • Kang HJ et al (2004) Ectopic expression of the catalytic subunit of telomerase protects against brain injury resulting from ischemia and NMDA-induced neurotoxicity. J Neurosci 24(6):1280–1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang L et al (2019) Restoration of autophagic flux rescues oxidative damage and mitochondrial dysfunction to protect against intervertebral disc degeneration. Oxid Med Cell Long 2019

  • Karsono AH et al (2021) Potential antiaging effects of DLBS1649, a centella asiatica bioactive extract. J Exp Pharmacol 13:781

    Article  PubMed  PubMed Central  Google Scholar 

  • Khatri DK, Juvekar AR (2016) Neuroprotective effect of curcumin as evinced by abrogation of rotenone-induced motor deficits, oxidative and mitochondrial dysfunctions in mouse model of Parkinson’s disease. Pharmacol Biochem Behav 150:39–47

    Article  PubMed  Google Scholar 

  • Khotimah H et al (2015) Decreasing α-synuclein aggregation by methanolic extract of Centella asiatica in zebrafish Parkinson’s model. Asian Pac J Trop Biomed 5(11):948–954

    Article  CAS  Google Scholar 

  • Kim J-H et al (2011) Curcumin stimulates proliferation, stemness acting signals and migration of 3T3-L1 preadipocytes. Int J Mol Med 28(3):429–435

    CAS  PubMed  Google Scholar 

  • Kolyada AK et al (2016) Studies of Telomere length in patients with Parkinson’s disease. Neurosci Behav Physiol 46(3):344–347

    Article  CAS  Google Scholar 

  • Kong CM, Lee XW, Wang X (2013) Telomere shortening in human diseases. FEBS J 280(14):3180–3193

    Article  CAS  PubMed  Google Scholar 

  • Kubota Y et al (2006) Effects of ginkgo biloba extract on blood pressure and vascular endothelial response by acetylcholine in spontaneously hypertensive rats. J Pharm Pharmacol 58(2):243–249

    Article  CAS  PubMed  Google Scholar 

  • Kuhad A et al (2013) Neuroprotective effect of sesamol and quercetin against QA induced neurotoxicity: an experimental paradigm of huntington’s disease. J Neurol Sci 333:e149–e150

    Article  Google Scholar 

  • Kumar V et al (2015) Protective effects of centella asiatica against isoproterenol-induced myocardial infarction in rats: biochemical, mitochondrial and histological findings. J Phytopharmacol 4:80–86

    Article  CAS  Google Scholar 

  • Kumar V et al (2016) Differential responses of Trans-Resveratrol on proliferation of neural progenitor cells and aged rat hippocampal neurogenesis. Sci Rep 6:28142

    Article  PubMed  PubMed Central  Google Scholar 

  • Kunnumakkara AB et al (2019) Is curcumin bioavailability a problem in humans: lessons from clinical trials. Expert Opin Drug Metab Toxicol 15(9):705–733

    Article  CAS  PubMed  Google Scholar 

  • Lanzilli G et al (2006) Resveratrol down-regulates the growth and telomerase activity of breast cancer cells in vitro. Int J Oncol 28(3):641–648

    CAS  PubMed  Google Scholar 

  • Lee JH, Chung IK (2010) Curcumin inhibits nuclear localization of telomerase by dissociating the Hsp90 co-chaperone p23 from hTERT. Cancer Lett 290(1):76–86

    Article  CAS  PubMed  Google Scholar 

  • Lee J et al (1999) Telomere length changes in patients undergoing hematopoietic stem cell transplantation. Bone Marrow Trans 24(4):411–415

    Article  CAS  Google Scholar 

  • Lee S-Y et al (2018) Astragaloside VI and cycloastragenol-6-O-beta-D-glucoside promote wound healing in vitro and in vivo. Phytomedicine 38:183–191

    Article  CAS  PubMed  Google Scholar 

  • Lee Y et al (2019) Significant roles of neuroinflammation in Parkinson’s disease: therapeutic targets for PD prevention. Arch Pharmacal Res 42(5):416–425

    Article  CAS  Google Scholar 

  • Lei X et al (2015) Neuroprotective effects of quercetin in a mouse model of brain ischemic/reperfusion injury via anti-apoptotic mechanisms based on the Akt pathway. Mol Med Rep 12(3):3688–3696

    Article  CAS  PubMed  Google Scholar 

  • Leistner E, Drewke C (2010) Ginkgo biloba and ginkgotoxin. J Nat Prod 73(1):86–92

    Article  CAS  PubMed  Google Scholar 

  • Leri A et al (2003) Ablation of telomerase and telomere loss leads to cardiac dilatation and heart failure associated with p53 upregulation. EMBO J 22(1):131–139

    Article  CAS  PubMed Central  Google Scholar 

  • Li M et al (2012) Astragaloside IV attenuates Toll-like receptor 4 expression via NF-κB pathway under high glucose condition in mesenchymal stem cells. Eur J Pharmacol 696(1):203–209

    Article  CAS  PubMed  Google Scholar 

  • Li G et al (2015) Curcumin improves bone microarchitecture in glucocorticoid-induced secondary osteoporosis mice through the activation of microRNA-365 via regulating MMP-9. Int J Clin Exp Pathol 8(12):15684–15695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J et al (2015) Resveratrol attenuates inflammation in the rat heart subjected to ischemia-reperfusion: role of the TLR4/NF-κB signaling pathway. Mol Med Rep 11(2):1120–1126

    CAS  Google Scholar 

  • Li B et al (2016) Protective mechanism of quercetin on acute myocardial infarction in rats. Genet Mol Res 15:15017117

    CAS  Google Scholar 

  • Li W, Suwanwela NC, Patumraj S (2017) Curcumin prevents reperfusion injury following ischemic stroke in rats via inhibition of NF-κB, ICAM-1, MMP-9 and caspase-3 expression. Mol Med Rep 16(4):4710–4720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li T et al (2019) Ginkgo Biloba Pretreatment Attenuates Myocardial Ischemia-Reperfusion Injury via mitoBKCa. Am J Chin Med 47(05):1057–1073

    Article  CAS  Google Scholar 

  • Li M et al (2020) Cycloastragenol upregulates SIRT1 expression, attenuates apoptosis and suppresses neuroinflammation after brain ischemia. Acta Pharmacol Sin 41(8):1025–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X et al (2020a) Curcumin protects osteoblasts from oxidative stress-induced dysfunction via GSK3β-Nrf2 signaling pathway. Front Bioeng Biotechnol 8:625

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z et al (2020b) Potential antiosteoporotic effect of ginkgo biloba extract via regulation of SIRT1-NF-kB signaling pathway. J King Saud Univ: Sci 32(4):2513–2519

    Article  Google Scholar 

  • Li S et al (2017) Ginkgo biloba extract improved cognitive and neurological functions of acute ischaemic stroke: a randomised controlled trial 2(4)

  • Liang Y et al (2020) Protective effect of quercetin against myocardial ischemia as a Ca 2+ channel inhibitor: involvement of inhibiting contractility and Ca 2+ influx via L-type Ca 2+ channels. Arch Pharm Res 43(8):808–820

    Article  CAS  PubMed  Google Scholar 

  • Liao Z et al (2015) Long-term oral resveratrol intake provides nutritional preconditioning against myocardial ischemia/reperfusion injury: involvement of VDAC1 downregulation. Mol Nutr Food Res 59(3):454–464

    Article  CAS  PubMed  Google Scholar 

  • Lin JF et al (2008) Resveratrol reduces infarct size and improves ventricular function after myocardial ischemia in rats. Life Sci 83(9–10):313–317

    Article  CAS  PubMed  Google Scholar 

  • Lin Y et al (2013) Neuroprotective effect of resveratrol on ischemia/reperfusion injury in rats through TRPC6/CREB pathways. J Mol Neurosci 50(3):504–513

    Article  CAS  PubMed  Google Scholar 

  • Lin K et al (2022) Oleanolic acid alleviates cerebral ischemia/reperfusion injury via regulation of the GSK-3β/HO-1 signaling pathway. Pharmaceuticals 15(1):1

    Article  CAS  Google Scholar 

  • Ling L, Gu S, Cheng Y (2017) Resveratrol activates endogenous cardiac stem cells and improves myocardial regeneration following acute myocardial infarction. Mol Med Rep 15(3):1188–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y et al (2000) The telomerase reverse transcriptase is limiting and necessary for telomerase function in vivo. Curr Biol 10(22):1459–1462

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhang L, Lu SJM (2012) Evaluation of antioxidant and immunity activities of quercetin in isoproterenol-treated rats. Molecules 17(4):4281–4291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu AH et al (2013) Cardio-protection by Ginkgo biloba extract 50 in rats with acute myocardial infarction is related to Na(+)-Ca(2)(+) exchanger. Am J Chin Med 41(4):789–800

    Article  PubMed  Google Scholar 

  • Liu H et al (2014) Heart protective effects and mechanism of quercetin preconditioning on anti-myocardial ischemia reperfusion (IR) injuries in rats. Gene 545(1):149–155

    Article  CAS  PubMed  Google Scholar 

  • Liu Z et al (2017) Curcumin protects against ischemic stroke by titrating microglia/macrophage polarization. Front Aging Neurosci 9:233

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu S et al (2019) Resveratrol improves cardiac function by promoting M2-like polarization of macrophages in mice with myocardial infarction. Am J Trans Res 11(8):5212–5226

    CAS  Google Scholar 

  • Liu J et al (2015) Pretreatment of adipose derived stem cells with curcumin facilitates myocardial recovery via antiapoptosis and angiogenesis. 2015

  • Loesche A et al (2019) Ursolic and oleanolic acid derivatives with cholinesterase inhibiting potential. Bioorg Chem 85:23–32

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Guo X, Zhao PJM (2011) Effect of Ginkgo biloba extract 50 on immunity and antioxidant enzyme activities in ischemia reperfusion rats. Molecules 16(11):9194–9206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu M et al (2015) Astragaloside IV attenuates injury caused by myocardial ischemia/reperfusion in rats via regulation of toll-like receptor 4/nuclear factor-κB signaling pathway. Phytother Res 29(4):599–606

    Article  CAS  PubMed  Google Scholar 

  • Lucinda LMF et al (2014) The effect of Ginkgo biloba extract treatment in the Bcl-2 expression by osteoblasts in the femoral trabecular bone of Wistar rats with glucocorticoid-induced osteoporosis. Rev Bras 24(3):363–366

    CAS  Google Scholar 

  • Lv FH et al (2016) Effects of curcumin on the apoptosis of cardiomyocytes and the expression of NF-κB, PPAR-γ and Bcl-2 in rats with myocardial infarction injury. Exp Ther Med 12(6):3877–3884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mabandla MV, Nyoka M, Daniels WMU (2015) Early use of oleanolic acid provides protection against 6-hydroxydopamine induced dopamine neurodegeneration. Brain Res 1622:64–71

    Article  CAS  PubMed  Google Scholar 

  • Makuch S, Więcek K, Woźniak M (2021) The Immunomodulatory and anti-inflammatory effect of curcumin on immune cell populations, cytokines, and in vivo models of rheumatoid arthritis. Pharmaceuticals 14(4):309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansour SM et al (2011) Ginkgo biloba extract (EGb 761) normalizes hypertension in 2K, 1C hypertensive rats: Role of antioxidant mechanisms, ACE inhibiting activity and improvement of endothelial dysfunction. Phytomedicine 18(8):641–647

    Article  CAS  Google Scholar 

  • Marques BL et al (2019) The role of neurogenesis in neurorepair after ischemic stroke. Semin Cell Devl Biol

  • Martinez P, Blasco MA (2018) Heart-Breaking Telomeres. Circ Res 123(7):787–802

    Article  CAS  PubMed  Google Scholar 

  • Mathur S et al (2014) Three-dimensional quantitative imaging of telomeres in buccal cells identifies mild, moderate, and severe Alzheimer’s disease patients. J Alzheimers Dis 39(1):35–48

    Article  PubMed  Google Scholar 

  • Matsui T et al (2014) Regeneration of the damaged central nervous system through reprogramming technology: basic concepts and potential application for cell replacement therapy. Exp Neurol 260:12–18

    Article  PubMed  Google Scholar 

  • Matthews DG et al (2019) Centella asiatica improves memory and promotes antioxidative signaling in 5XFAD mice. Antioxidants 8(12):630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendelsohn AR, Larrick JW (2012) Ectopic expression of telomerase safely increases health span and life span. Rejuvenation Res 15(4):435–438

    Article  CAS  Google Scholar 

  • Mesquita TR et al (2017) Cardioprotective action of ginkgo biloba extract against sustained β-adrenergic stimulation occurs via activation of M2/NO pathway. Front Pharmacol 8:220

    Article  PubMed  PubMed Central  Google Scholar 

  • Micheli L et al (2020) Intra-articular route for the system of molecules 14G1862 from Centella asiatica: pain relieving and protective effects in a rat model of osteoarthritis. Nutrients 12(6):1618

    Article  CAS  PubMed Central  Google Scholar 

  • Mirhadi E et al (2021) Resveratrol: Mechanistic and therapeutic perspectives in pulmonary arterial hypertension. Pharmacol Res 163:105287

    Article  CAS  Google Scholar 

  • Mokni M et al (2013) Resveratrol provides cardioprotection after ischemia/reperfusion injury via modulation of antioxidant enzyme activities. Iran J Pharm Res: IJPR 12(4):867–875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montenegro MF et al (2010) Quercetin restores plasma nitrite and nitroso species levels in renovascular hypertension. Naunyn Schmiedebergs Arch Pharmacol 382(4):293–301

    Article  CAS  PubMed  Google Scholar 

  • Morales-Cano D et al (2014) The flavonoid quercetin reverses pulmonary hypertension in rats. PLoS ONE 9(12):e114492

    Article  PubMed  PubMed Central  Google Scholar 

  • Naghizadeh M et al (2021) Effects of quercetin on spatial memory, hippocampal antioxidant defense and BDNF concentration in a rat model of Parkinson’s disease: AN electrophysiological study. Avicenna J Phytomed 11(6):599

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagpal N et al (2020) Small-molecule PAPD5 inhibitors restore telomerase activity in patient stem cells. Cell Stem Cell 26(6):896-909 e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naia L et al (2017) Comparative mitochondrial-based protective effects of resveratrol and nicotinamide in Huntington’s disease models. Mol Neurobiol 54(7):5385–5399

    Article  CAS  PubMed  Google Scholar 

  • Nakahata A et al (2021) Intra-articular injections of curcumin monoglucuronide TBP1901 suppresses articular cartilage damage and regulates subchondral bone alteration in an osteoarthritis rat model. Cartilage 13(2suppl):153S-167S

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nalbantsoy A et al (2012) Evaluation of the immunomodulatory properties in mice and in vitro anti-inflammatory activity of cycloartane type saponins from Astragalus species. J Ethnopharmacol 139(2):574–581

    Article  CAS  PubMed  Google Scholar 

  • Ndlovu BC, Daniels WM, Mabandla MV (2016) Amelioration of L-Dopa-associated dyskinesias with triterpenoic acid in a Parkinsonian rat model. Neurotox Res 29(1):126–134

    Article  CAS  PubMed  Google Scholar 

  • Nie P et al (2019) Astragaloside IV exerts a myocardial protective effect against cardiac hypertrophy in rats, partially via activating the Nrf2/HO-1 signaling pathway 2019

  • Nirmala C, Puvanakrishnan R (1996) Protective role of curcumin against isoproterenol induced myocardial infarction in rats. Mol Cell Biochem 159(2):85–93

    Article  CAS  PubMed  Google Scholar 

  • Oh H et al (2001) Telomerase reverse transcriptase promotes cardiac muscle cell proliferation, hypertrophy, and survival. Proc Natl Acad Sci USA 98(18):10308–10313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okada M et al (2016) Abrogation of age-induced MicroRNA-195 rejuvenates the senescent mesenchymal stem cells by reactivating telomerase. Stem Cells 34(1):148–159

    Article  CAS  PubMed  Google Scholar 

  • Omar N et al (2019) The effects of Centella asiatica (L.) Urban on neural differentiation of human mesenchymal stem cells in vitro. BMC Complement Altern Med 19(1):167

    Article  PubMed  PubMed Central  Google Scholar 

  • Oršolić N et al (2018) Effect of quercetin on bone mineral status and markers of bone turnover in retinoic acid-induced osteoporosis. Polish J Food and Nutr Sci 68(2):149–162

    Article  Google Scholar 

  • Park D-J et al (2021) Quercetin attenuates the reduction of parvalbumin in middle cerebral artery occlusion animal model. Lab Anim Res 37(1):1–8

    Article  Google Scholar 

  • Patel RV et al (2018) Therapeutic potential of quercetin as a cardiovascular agent. Eur J Med Chem 155:889–904

    Article  CAS  PubMed  Google Scholar 

  • Pérez-Rivero G et al (2006) Mice deficient in telomerase activity develop hypertension because of an excess of endothelin production. Circulation 114(4):309–317

    Article  PubMed  Google Scholar 

  • Phachonpai W et al (2010) Neuroprotective effect of quercetin encapsulated liposomes: a novel therapeutic strategy against Alzheimer’s disease. Am J Appl Sci 7(4):480–485

    Article  CAS  Google Scholar 

  • Pignolo RJ et al (2008) Defects in telomere maintenance molecules impair osteoblast differentiation and promote osteoporosis. Aging Cell 7(1):23–31

    Article  CAS  PubMed  Google Scholar 

  • Pirmoradi S et al (2018) Curcumin affects adipose tissue-derived mesenchymal stem cell aging through TERT gene expression. Drug Res 68(04):213–221

    Article  CAS  Google Scholar 

  • Poewe W et al (2017) Parkinson disease. Nat Rev Dis Primers 3(1):1–21

    Article  Google Scholar 

  • Porquet D et al (2014) Neuroprotective role of trans-resveratrol in a murine model of familial alzheimer’s disease. J Alzheimers Dis 42(4):1209–1220

    Article  CAS  PubMed  Google Scholar 

  • Porro C et al (2019) Curcumin regulates anti-inflammatory responses by JAK/STAT/SOCS signaling pathway in BV-2 microglial cells. Biology 8(3):51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pourbagher-Shahri AM et al (2021) Curcumin and cardiovascular diseases: focus on cellular targets and cascades. Biomed Pharmacother 136:111214

    Article  CAS  PubMed  Google Scholar 

  • Povedano JM et al (2018) Therapeutic effects of telomerase in mice with pulmonary fibrosis induced by damage to the lungs and short telomeres. Elife 7:e31299

    Article  PubMed  PubMed Central  Google Scholar 

  • Pramono S, Nugroho AE (2014) Triterpenoid-rich fraction of Centella asiatica leaves and in vivo antihypertensive activity 21(1)

  • Prieto-Oliveira P (2021) Telomerase activation in the treatment of aging or degenerative diseases: a systematic review. Mol Cell Biochem 476(2):599–607

    Article  CAS  PubMed  Google Scholar 

  • Raghavendra M et al (2009) Role of centella asiatica on cerebral post-ischemic reperfusion and long-term hypoperfusion in rats. Int J Green Pharm (IJGP) 3(2):88

    Article  Google Scholar 

  • Rahnavard M et al (2019) Curcumin ameliorated myocardial infarction by inhibition of cardiotoxicity in the rat model. J Cell Biochem 120(7):11965–11972

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran C et al (2002) Curcumin inhibits telomerase activity through human telomerase reverse transcritpase in MCF-7 breast cancer cell line. Cancer Lett 184(1):1–6

    Article  CAS  PubMed  Google Scholar 

  • Ran K et al (2014) Ginkgo biloba extract postconditioning reduces myocardial ischemia reperfusion injury. Genet Mol Res 13(2):2703–2708

    Article  CAS  PubMed  Google Scholar 

  • Ran Y et al (2021) Curcumin ameliorates white matter injury after ischemic stroke by inhibiting microglia/macrophage pyroptosis through NF-κB suppression and NLRP3 inflammasome inhibition 2021

  • Ren Y-S et al (2020) Application quantitative proteomics approach to identify differentially expressed proteins associated with cardiac protection mediated by cycloastragenol in acute myocardial infarction rats. J Proteom 222:103691

    Article  CAS  Google Scholar 

  • Rimbaud S et al (2011) Resveratrol improves survival, hemodynamics and energetics in a rat model of hypertension leading to heart failure. PLoS ONE 6(10):e26391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rong Z-T et al (2011) Protective effects of oleanolic acid on cerebral ischemic damage in vivo and H2O2-induced injury in vitro. Pharm Biol 49(1):78–85

    Article  CAS  PubMed  Google Scholar 

  • Rossiello F et al (2014) Irreparable telomeric DNA damage and persistent DDR signalling as a shared causative mechanism of cellular senescence and ageing. Curr Opin Genet Dev 26:89–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rotpenpian N et al (2021) A standardized extract of Centella asiatica (ECa 233) prevents temporomandibular joint osteoarthritis by modulating the expression of local inflammatory mediators in mice. J Appl Oral Sci 29

  • Rusin M et al (2009) Resveratrol induces senescence-like growth inhibition of U-2 OS cells associated with the instability of telomeric DNA and upregulation of BRCA1. Mech Ageing Dev 130(8):528–537

    Article  CAS  PubMed  Google Scholar 

  • Saberi M, Zhang X, Mobasheri A (2021) Targeting mitochondrial dysfunction with small molecules in intervertebral disc aging and degeneration. GeroScience 43(2):517–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safaeinejad Z et al (2017) Resveratrol promotes human embryonic stem cells self-renewal by targeting SIRT1-ERK signaling pathway. Eur J Cell Biol 96(7):665–672

    Article  CAS  PubMed  Google Scholar 

  • Sánchez M et al (2006) Quercetin downregulates NADPH oxidase, increases eNOS activity and prevents endothelial dysfunction in spontaneously hypertensive rats. J Hypertens 24(1):75–84

    Article  PubMed  Google Scholar 

  • Sapkota A, Choi JW (2021) Oleanolic acid provides neuroprotection against ischemic stroke through the inhibition of microglial activation and NLRP3 inflammasome activation. Therapeutics

  • Scarabino D et al (2019) Leukocyte telomere shortening in Huntington’s disease. J Neurol Sci 396:25–29

    Article  CAS  PubMed  Google Scholar 

  • Senthil S, Sridevi M, Pugalendi KV (2007) Cardioprotective effect of oleanolic acid on isoproterenol-induced myocardial ischemia in rats. Toxicol Pathol 35(3):418–423

    Article  CAS  PubMed  Google Scholar 

  • Shao Z et al (2021) Senolytic agent Quercetin ameliorates intervertebral disc degeneration via the Nrf2/NF-κB axis. Osteoarthr Cartil 29(3):413–422

    Article  CAS  Google Scholar 

  • Sharifi S et al (2019) Stem cell therapy: curcumin does the trick. Phytother Res 33(11):2927–2937

    Article  PubMed  Google Scholar 

  • Sharma N, Nehru B (2018) Curcumin affords neuroprotection and inhibits α-synuclein aggregation in lipopolysaccharide-induced Parkinson’s disease model. Inflammopharmacology 26(2):349–360

    Article  CAS  PubMed  Google Scholar 

  • Sharma H et al (2005) Molecular pathways in the chemosensitization of cisplatin by quercetin in human head and neck cancer. Cancer Biol Ther 4(9):949–955

    Article  CAS  PubMed  Google Scholar 

  • Shen M et al (2006) Cardioprotective effect of resvaratrol pretreatment on myocardial ischemia–reperfusion induced injury in rats. Vasc Pharmacol 45(2):122–126

    Article  CAS  Google Scholar 

  • Sheng R, Gu Z-L, Xie M-L (2013) Epigallocatechin gallate, the major component of polyphenols in green tea, inhibits telomere attrition mediated cardiomyocyte apoptosis in cardiac hypertrophy. Int J Cardiol 162(3):199–209

    Article  PubMed  Google Scholar 

  • Shi X et al (2015) Curcumin inhibits Aβ-induced microglial inflammatory responses in vitro: involvement of ERK1/2 and p38 signaling pathways. Neurosci Lett 594:105–110

    Article  CAS  PubMed  Google Scholar 

  • Shi YH et al (2021) Neuroprotective effect of astragaloside IV on cerebral Ischemia/reperfusion injury rats through Sirt1/Mapt pathway. Front Pharmacol 12:639898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y-J et al (2021) Neuroprotective effects of oleanolic acid against cerebral ischemia-reperfusion injury in mice 113785

  • Shin JA et al (2010) Therapeutic effects of resveratrol during acute periods following experimental ischemic stroke. J Neuroimmunol 227(1):93–100

    Article  CAS  PubMed  Google Scholar 

  • Shin JA et al (2012) Acute resveratrol treatment modulates multiple signaling pathways in the ischemic brain. Neurochem Res 37(12):2686–2696

    Article  CAS  PubMed  Google Scholar 

  • Si J et al (2014) HIF-1α signaling activation by post-ischemia treatment with astragaloside IV attenuates myocardial ischemia-reperfusion injury. PLoS ONE 9(9):e107832

    Article  PubMed  PubMed Central  Google Scholar 

  • Siddique YH et al (2014) Effect of centella asiatica leaf extract on the dietary supplementation in transgenic drosophila model of parkinson’s disease. Parkinson’s Dis 2014

  • Sinha K, Chaudhary G, Kumar Gupta Y (2002) Protective effect of resveratrol against oxidative stress in middle cerebral artery occlusion model of stroke in rats. Life Sci 71(6):655–665

    Article  CAS  PubMed  Google Scholar 

  • Somova L et al (2003) Cardiovascular, antihyperlipidemic and antioxidant effects of oleanolic and ursolic acids in experimental hypertension. Phytomedicine 10(2–3):115–121

    Article  CAS  PubMed  Google Scholar 

  • Son A, Park J-E, Kim VN (2018) PARN and TOE1 constitute a 3′ end maturation module for nuclear non-coding RNAs. Cell Rep 23(3):888–898

    Article  CAS  PubMed  Google Scholar 

  • Soumyanath A et al (2012) Centella asiatica extract improves behavioral deficits in a mouse model of Alzheimer’s disease: investigation of a possible mechanism of action. Int J Alzheimer’s Dis 2012

  • Sui Y-B et al (2019) Astragaloside IV alleviates heart failure by promoting angiogenesis through the JAK-STAT3 pathway. Pharm Biol 57(1):48–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Q et al (2014) Protective effects of astragaloside IV against amyloid beta1-42 neurotoxicity by inhibiting the mitochondrial permeability transition pore opening. PLoS ONE 9(6):e98866

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun B et al (2020) Therapeutic potential of centella asiatica and its triterpenes: a review. Front Pharmacol 11:568032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y et al (2021) Astragaloside IV attenuates inflammatory response mediated by NLRP-3/calpain-1 is involved in the development of pulmonary hypertension. J Cell Mol Med 25(1):586–590

    Article  CAS  PubMed  Google Scholar 

  • Szwajgier D, Borowiec K, Zapp J (2020) Activity-guided isolation of cholinesterase inhibitors quercetin, rutin and kaempferol from Prunus persica fruit. Zeitschrift Für Naturforschung C 75(3–4):87–96

    Article  CAS  Google Scholar 

  • Szychlinska MA et al (2020) Cycloastragenol as an exogenous enhancer of chondrogenic differentiation of human adipose-derived mesenchymal stem cells. A morphological study. Cells 9(2):347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taka T et al (2014a) Curcuminoid derivatives enhance telomerase activity in an in vitro TRAP assay. Bioorg Med Chem Lett 24(22):5242–5246

    Article  CAS  PubMed  Google Scholar 

  • Taka T et al (2014b) Curcuminoid derivatives enhance telomerase activity in an in vitro TRAP assay. Bioorganic Med Chem Lett 24(22):5242–5246

    Article  CAS  Google Scholar 

  • Takaoka M (1939) Resveratrol, a new phenolic compound, from Veratrum grandiflorum. Nippon Kagaku Kaishi 60:1090–1100

    Article  Google Scholar 

  • Tan Y-F et al (2010) Stem cell factor secretion by bone mesenchymal stem cells stimulated with astragaloside IV. Zhongguo dang dai er ke za zhi = Chin J Contemp Pediatr 12(4):290–292

    CAS  Google Scholar 

  • Tang B et al (2018) Astragaloside IV inhibits ventricular remodeling and improves fatty acid utilization in rats with chronic heart failure. Biosci Rep 38(3):BSR20171036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thanseem I et al (2017) Is telomere length a biomarker of neurological disorders? Biomark Med 11(9):799–810

    Article  CAS  PubMed  Google Scholar 

  • Theodotou M et al (2017) The effect of resveratrol on hypertension: a clinical trial. Exp Ther Med 13(1):295–301

    Article  CAS  PubMed  Google Scholar 

  • Tsoukalas D et al (2019) Discovery of potent telomerase activators: unfolding new therapeutic and anti-aging perspectives. Mol Med Rep 20(4):3701–3708

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsoukalas D et al (2021) Reversal of brain aging by targeting telomerase: a nutraceutical approach. Int J Mol Med 48(5):199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tu L et al (2013) Astragaloside IV protects heart from ischemia and reperfusion injury via energy regulation mechanisms. Microcirculation 20(8):736–747

    CAS  PubMed  Google Scholar 

  • Ullah M, Sun Z (2018) Klotho deficiency accelerates stem cells aging by impairing telomerase activity. J Gerontol: Seri A

  • Vakili S et al (2021) Quercetin and vitamin E alleviate ovariectomy-induced osteoporosis by modulating autophagy and apoptosis in rat bone cells. J Cell Physiol 236(5):3495–3509

    Article  CAS  PubMed  Google Scholar 

  • Valdes AM et al (2007) Telomere length in leukocytes correlates with bone mineral density and is shorter in women with osteoporosis. Osteoporos Int 18(9):1203–1210

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela HF et al (2009) Cycloastragenol extends T cell proliferation by increasing telomerase activity. J Immunol 182:1

    Article  Google Scholar 

  • Van Der Harst P et al (2007) Telomere length of circulating leukocytes is decreased in patients with chronic heart failure. J Am Coll Cardiol 49(13):1459–1464

    Article  Google Scholar 

  • van der Harst P et al (2010) Telomere length and outcome in heart failure. Ann Med 42(1):36–44

    Article  Google Scholar 

  • Wan Y et al (2018) Preventive effects of astragaloside IV and its active sapogenin cycloastragenol on cardiac fibrosis of mice by inhibiting the NLRP3 inflammasome. Eur J Pharmacol 833:545–554

    Article  CAS  PubMed  Google Scholar 

  • Wan M, Gray-Gaillard EF, Elisseeff JH (2021a) Cellular senescence in musculoskeletal homeostasis, diseases, and regeneration. Bone Res 9(1):41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan T et al (2021b) Increased telomerase improves motor function and alpha-synuclein pathology in a transgenic mouse model of Parkinson’s disease associated with enhanced autophagy. Prog Neurobiol 199:101953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Chen M-Z (2014) Astragaloside IV possesses antiarthritic effect by preventing interleukin 1β-induced joint inflammation and cartilage damage. Arch Pharmacal Res 37(6):793–802

    Article  CAS  Google Scholar 

  • Wang X-B et al (2011) Resveratrol-induced augmentation of telomerase activity delays senescence of endothelial progenitor cells. Chin Med J 124(24):4310–4315

    CAS  PubMed  Google Scholar 

  • Wang X, Zhao X, Tang S (2015) Inhibitory effects of EGb761 on the expression of matrix metalloproteinases (MMPs) and cartilage matrix destruction. Cell Stress Chaperones 20(5):781–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z et al (2016) Targeted metabolomic profiling of cardioprotective effect of Ginkgo biloba L. extract on myocardial ischemia in rats. Phytomedicine 23(6):621–631

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chen L, Peng W (2017) Protective effects of resveratrol on osteoporosis via activation of the SIRT1-NF-κB signaling pathway in rats. Exp Ther Med 14(5):5032–5038

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J et al (2018a) Cycloastragenol ameliorates experimental heart damage in rats by promoting myocardial autophagy via inhibition of AKT1-RPS6KB1 signaling. Biomed Pharmacother 107:1074–1081

    Article  CAS  PubMed  Google Scholar 

  • Wang J et al (2018b) Polydatin suppresses nucleus pulposus cell senescence, promotes matrix homeostasis and attenuates intervertebral disc degeneration in rats. J Cell Mol Med 22(11):5720–5731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y-Y et al (2020) Quercetin protects against cerebral ischemia/reperfusion and oxygen glucose deprivation/reoxygenation neurotoxicity. J Nutr Biochem 83:108436

    Article  CAS  PubMed  Google Scholar 

  • Wang WW et al (2021a) Administration of quercetin improves mitochondria quality control and protects the neurons in 6-OHDA-lesioned Parkinson’s disease models. Aging 13(8):11738–11751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang N et al (2021b) Quercetin promotes osteogenic differentiation and antioxidant responses of mouse bone mesenchymal stem cells through activation of the AMPK/SIRT1 signaling pathway. Phytother Res 35(5):2639–2650

    Article  CAS  Google Scholar 

  • Wang J, Zhang P, TU Z (2003) Effects of quercetin on proliferation of lung cancer cell line A549 by down-regulating hTERT gene expression

  • Wang D et al (2020) Quercetin suppresses apoptosis and attenuates intervertebral disc degeneration via the SIRT1-autophagy pathway. Front Cell Dev Biol 8

  • Wei Y et al (2018) Resveratrol ameliorates inflammatory damage and protects against osteoarthritis in a rat model of osteoarthritis. Mol Med Rep 17(1):1493–1498

    CAS  PubMed  Google Scholar 

  • Wei D et al (2019) Astragaloside IV alleviates myocardial ischemia-reperfusion injury in rats through regulating PI3K/AKT/GSK-3β signaling pathways1 34

  • Whittemore K et al (2019) Telomerase gene therapy ameliorates the effects of neurodegeneration associated to short telomeres in mice. Aging (Albany NY) 11(10):3280–3297

    Google Scholar 

  • Wongcharoen W et al (2012) Effects of curcuminoids on frequency of acute myocardial infarction after coronary artery bypass grafting. Am J Cardiol 110(1):40–44

    Article  CAS  PubMed  Google Scholar 

  • Wright LS et al (2006) Human progenitor cells isolated from the developing cortex undergo decreased neurogenesis and eventual senescence following expansion in vitro. Exp Cell Res 312(11):2107–2120

    Article  CAS  PubMed  Google Scholar 

  • Wu J et al (2014) Prolonged expansion of human nucleus pulposus cells expressing human telomerase reverse transcriptase mediated by lentiviral vector. J Orthop Res 32(1):159–166

    Article  PubMed  Google Scholar 

  • Wu Z et al (2016) Effects of the extract of ginkgo biloba on the differentiation of bone marrow mesenchymal stem cells in vitro. Am J Trans Res 8(7):3032–3040

    CAS  Google Scholar 

  • Wu S et al (2021a) Curcumin ameliorates ischemic stroke injury in rats by protecting the integrity of the blood-brain barrier. Exp Ther Med 22(1):1–8

    Article  Google Scholar 

  • Wu J et al (2021b) Cycloastragenol protects against glucocorticoid-induced osteogenic differentiation inhibition by activating telomerase. Phytother Res 35(4):2034–2044

    Article  CAS  PubMed  Google Scholar 

  • Wu Y et al (2021c) Network pharmacology-based analysis on the action mechanism of oleanolic acid to alleviate osteoporosis. ACS Omega 6(42):28410–28420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia L et al (2008) Resveratrol reduces endothelial progenitor cells senescence through augmentation of telomerase activity by Akt-dependent mechanisms. Br J Pharmacol 155(3):387–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao Z et al (2014) Telomerase: a target for therapeutic effects of curcumin and a curcumin derivative in Aβ1-42 insult in vitro. PLoS ONE 9(7):e101251

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao J et al (2016) Curcumin protects against myocardial infarction-induced cardiac fibrosis via SIRT1 activation in vivo and in vitro. Drug Des Dev Ther 10:1267

    CAS  Google Scholar 

  • Xie B-P et al (2019) Oleanolic acid inhibits RANKL-induced osteoclastogenesis via ER alpha/miR-503/RANK signaling pathway in RAW264. 7 cells. Biomed Pharmacother 117:109045

    Article  CAS  PubMed  Google Scholar 

  • Xin P, Pan Y, Zhu W, Huang S (2010) Favorable effects of resveratrol on sympathetic neural remodeling in rats following myocardial infarction. Eur J Pharmacol 649(1–3):293–300

    Article  CAS  PubMed  Google Scholar 

  • Xiong XJ et al (2014) Ginkgo biloba extract for essential hypertension: a systemic review. Phytomedicine 21(10):1131–1136

    Article  CAS  PubMed  Google Scholar 

  • Xu H et al (2019) Resveratrol pretreatment alleviates myocardial ischemia/reperfusion injury by inhibiting STIM1-mediated intracellular calcium accumulation. J Physiol Biochem 75(4):607–618

    Article  CAS  PubMed  Google Scholar 

  • Xu X et al (2019a) Differences in leukocyte telomere length between coronary heart disease and normal population: a multipopulation meta-analysis. 2019a

  • Yang J et al (2014) Neuroprotective effect of curcumin on hippocampal injury in 6-OHDA-induced Parkinson’s disease rat. Pathol Res Pract 210(6):357–362

    Article  CAS  Google Scholar 

  • Yang L et al (2016) Resveratrol attenuates myocardial ischemia/reperfusion injury through up-regulation of vascular endothelial growth factor B. Free Rad Biol Med 101:1–9

    Article  CAS  PubMed  Google Scholar 

  • Yang X et al (2019) The role and mechanism of SIRT1 in resveratrol-regulated osteoblast autophagy in osteoporosis rats. Sci Rep 9(1):1–15

    Article  Google Scholar 

  • Yang L et al (2019) Angiogenic function of astragaloside IV in rats with myocardial infarction occurs via the PKD1-HDAC5-VEGF pathway. Exp Ther Med 17(4):2511–2518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Y et al (2016) Curcumin exerts its anti-hypertensive effect by down-regulating the AT1 receptor in vascular smooth muscle cells. Sci Rep 6:25579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin B, Hou X-W, Lu M-L (2019) Astragaloside IV attenuates myocardial ischemia/reperfusion injury in rats via inhibition of calcium-sensing receptor-mediated apoptotic signaling pathways. Acta Pharmacol Sin 40(5):599–607

    Article  CAS  PubMed  Google Scholar 

  • Yu R et al (2019) Targeted neurotransmitter metabolomics profiling of oleanolic acid in the treatment of spontaneously hypertensive rats. RSC Adv 9(40):23276–23288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y et al (2020a) Cycloastragenol prevents age-related bone loss: evidence in d-galactose-treated and aged rats. Biomed Pharmacother 128:110304

    Article  CAS  PubMed  Google Scholar 

  • Yu T et al (2020b) Resveratrol promotes osteogenesis and alleviates osteoporosis by inhibiting p53. Aging 12(11):10359–10369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yudoh K et al (2001) Reconstituting telomerase activity using the telomerase catalytic subunit prevents the telomere shorting and replicative senescence in human osteoblasts. J Bone Miner Res 16(8):1453–1464

    Article  CAS  PubMed  Google Scholar 

  • Yung LY et al (2012) Astragaloside IV and cycloastragenol stimulate the phosphorylation of extracellular signal-regulated protein kinase in multiple cell types. Planta Med 78(02):115–121

    Article  CAS  PubMed  Google Scholar 

  • Zhai XX et al (2016) Effects of resveratrol on the proliferation, apoptosis and telomerase ability of human A431 epidermoid carcinoma cells. Oncol Lett 11(5):3015–3018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W-D et al (2006) Astragaloside IV dilates aortic vessels from normal and spontaneously hypertensive rats through endothelium-dependent and endothelium-independent ways. Planta Med 72(07):621–626

    Article  CAS  PubMed  Google Scholar 

  • Zhang X et al (2011) Curcumin mediates presenilin-1 activity to reduce β-amyloid production in a model of Alzheimer’s disease. Pharmacol Rep 63(5):1101–1108

    Article  CAS  Google Scholar 

  • Zhang B et al (2017) Resveratrol protects against mitochondrial dysfunction through autophagy activation in human nucleus pulposus cells. Biochem Biophys Res Commun 493(1):373–381

    Article  CAS  PubMed  Google Scholar 

  • Zhang X et al (2018) Protective effects of astragaloside IV against hypoxic pulmonary hypertension. Medchemcomm 9(10):1715–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang G et al (2018) Curcumin improves age-related and surgically induced osteoarthritis by promoting autophagy in mice. Biosci Rep 38(4):BSR20171691

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X et al (2019) Resveratrol protects myocardial apoptosis induced by ischemia-reperfusion in rats with acute myocardial infarction via blocking P13K/Akt/e-NOS pathway. Eur Rev Med Pharmacol Sci 23(4):1789–1796

    CAS  PubMed  Google Scholar 

  • Zhang Y et al (2019) The role of astragaloside IV against cerebral ischemia/reperfusion injury: suppression of apoptosis via promotion of P62-LC3-autophagy. Molecules 24(9):1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L et al (2021) Resveratrol ameliorates cardiac remodeling in a murine model of heart failure with preserved ejection fraction. Front Pharm 12:1356

    Google Scholar 

  • Zhao D et al (2018) Oleanolic acid exerts bone protective effects in ovariectomized mice by inhibiting osteoclastogenesis. J Pharmacol Sci 137(1):76–85

    Article  CAS  PubMed  Google Scholar 

  • Zheng Z et al (2015) The effect of curcumin and its nanoformulation on adjuvant-induced arthritis in rats. Drug Des Dev Ther 9:4931

    CAS  Google Scholar 

  • Zheng K et al (2017) Curcumin ameliorates memory decline via inhibiting BACE1 expression and β-Amyloid pathology in 5× FAD transgenic mice. Mol Neurobiol 54(3):1967–1977

    Article  CAS  PubMed  Google Scholar 

  • Zheng X et al (2021) cardioprotective properties of ginkgo biloba extract 80 via the activation of AKT/GSK3β/β-catenin signaling pathway 8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erdal Bedir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuru, G., Üner, G. & Bedir, E. Is telomerase a hidden player? Therapeutic potential of natural telomerase activators against age-related diseases. Phytochem Rev 22, 35–72 (2023). https://doi.org/10.1007/s11101-022-09829-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-022-09829-w

Keywords

Navigation