Skip to main content

Advertisement

Log in

Telomerase activation in the treatment of aging or degenerative diseases: a systematic review

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Telomeres are protective structures that are shortened during the lifetime, resulting in aging and degenerative diseases. Subjects experiencing aging and degenerative disorders present smaller telomeres than young and healthy ones. The size of these structures can be stabilized by telomerase, an enzyme which is inactive in adult tissues but functional in fetal and newborn tissues and adult testes and ovaries. The aim of this study was to perform a systematic review to evaluate the effect of telomerase activation in the treatment of degenerative and aging disorders. We accomplished the search using the Pubmed interface for papers published from September 1985 to April 16th, 2020. We found twenty one studies that matched our eligibility criteria. I concluded that telomerase is probably a potential and safe treatment for aging and degenerative diseases, demonstrating neither side effects nor risk of cancer in the selected studies. Further studies in humans are needed to confirm safety and efficiency of this treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Moyzis RK, Buckingham JM, Cram LS et al (1988) A highly conserved repetitive DNA sequence, (TTAGGG)n, present at the telomeres of human chromosomes. Proc Natl Acad Sci USA 85(18):6622–6626. https://doi.org/10.1073/pnas.85.18.6622

    Article  CAS  PubMed  Google Scholar 

  2. Artandi SE, DePinho RA (2010) Telomeres and telomerase in cancer. Carcinogenesis 31(1):9–18. https://doi.org/10.1093/carcin/bgp268

    Article  CAS  PubMed  Google Scholar 

  3. Xiao J, Yuan Q, Zhang S et al (2019) The telomere length of peripheral blood cells is associated with risk of schemic stroke in Han population of northern China. Medicine (Baltimore) 98(7):e14593. https://doi.org/10.1097/md.0000000000014593

    Article  CAS  Google Scholar 

  4. Gao D, Zhang R, Ji G et al (2018) Relative telomere length and stroke risk in a Chinese Han population. J Mol Neurosci 66(4):475–481. https://doi.org/10.1007/s12031-018-1160-9

    Article  CAS  PubMed  Google Scholar 

  5. Benetos A, Toupance S, Gautier S et al (2018) Short leukocyte telomere length precedes clinical expression of atherosclerosis: the blood-and-muscle model. Circ Res 122(4):616–623. https://doi.org/10.1161/CIRCRESAHA.117.311751

    Article  CAS  PubMed  Google Scholar 

  6. Farrag W, Eid M, El-Shazly S, Abdallah M (2011) Angiotensin II type 1 receptor gene polymorphism and telomere shortening in essential hypertension. Mol Cell Biochem 351(1–2):13–18. https://doi.org/10.1007/s11010-010-0706-0

    Article  CAS  PubMed  Google Scholar 

  7. Zhang DH, Wen XM, Zhang L, Cui W (2014) DNA methylation of human telomerase reverse transcriptase associated with leukocyte telomere length shortening in hyperhomocysteinemia-type hypertension in humans and in a rat model. Circ J 78(8):1915–1923. https://doi.org/10.1253/circj.cj-14-0233

    Article  CAS  PubMed  Google Scholar 

  8. He C, Jing S, Dai C et al (2019) Telomerase insufficiency reduced telomere erosion accumulation in successive generations in dyskeratosis congenita family. Mol Genet Genom Med 22:e00709. https://doi.org/10.1002/mgg3.709

    Article  CAS  Google Scholar 

  9. Diaz de Leon A, Cronkhite JT, Katzenstein AL et al (2010) Telomere lengths, pulmonary fibrosis and telomerase (TERT) mutations. PLoS One 5(5):e10680. https://doi.org/10.1371/journal.pone.0010680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Diaz de Leon A, Cronkhite JT, Yilmaz C et al (2011) Subclinical lung disease, macrocytosis, and premature graying in kindreds with telomerase (TERT) mutations. Chest 140(3):753–763. https://doi.org/10.1378/chest.10-2865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Arias-Salgado EG, Galvez E, Planas-Cerezales L et al (2019) Genetic analyses of aplastic anemia and idiopathic pulmonary fibrosis patients with short telomeres, possible implication of DNA-repair genes. Orphanet J Rare Dis 14(1):82. https://doi.org/10.1186/s13023-019-1046-0

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ding Y, Zhou X, Wu C et al (2018) Telomere length, ZNF208 genetic variants and risk of chronic obstructive pulmonary disease in Hainan Li population. J Gene Med 20(12):e3061. https://doi.org/10.1002/jgm.3061

    Article  CAS  PubMed  Google Scholar 

  13. Çevik B, Mançe-Çalışır Ö, Atbaşoğlu EC et al (2019) Psychometric liability to psychosis and childhood adversities are associated with shorter telomere length: a study on schizophrenia patients, unaffected siblings, and non-clinical controls. J Psychiatr Res 111:169–185. https://doi.org/10.1016/j.jpsychires.2019.01.022

    Article  PubMed  Google Scholar 

  14. van Mierlo HC, Wichers CGK, He Y et al (2017) Telomere quantification in frontal and temporal brain tissue of patients with schizophrenia. J Psychiatr Res 95:231–234. https://doi.org/10.1016/j.jpsychires.2017.09.006

    Article  PubMed  Google Scholar 

  15. Czepielewski LS, Massuda R, Panizzutti B et al (2018) Telomere length and CCL11 levels are associated with gray matter volume and episodic memory performance in schizophrenia: evidence of pathological accelerated aging. Schizophr Bull 44(1):158–167. https://doi.org/10.1093/schbul/sbx015

    Article  PubMed  Google Scholar 

  16. Galletly C, Dhillon VS, Liu D, Balzan RP, Hahn LA, Fenech MF (2017) Shorter telomere length in people with schizophrenia: a preliminary study from Australia. Schizophr Res 190:46–51. https://doi.org/10.1016/j.schres.2017.03.007

    Article  PubMed  Google Scholar 

  17. Czepielewski LS, Massuda R, Panizzutti B et al (2016) Telomere length in subjects with schizophrenia, their unaffected siblings and healthy controls: evidence of accelerated aging. Schizophr Res 174(1–3):39–42. https://doi.org/10.1016/j.schres.2016.04.004

    Article  PubMed  Google Scholar 

  18. Hochstrasser T, Marksteiner J, Humpel C (2012) Telomere length is age-dependent and reduced in monocytes of Alzheimer patients. Exp Gerontol 47(2):160–163. https://doi.org/10.1016/j.exger.2011.11.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De Felice B, Annunziata A, Fiorentino G et al (2014) Telomerase expression in amyotrophic lateral sclerosis (ALS) patients. J Hum Genet 59(10):555–561. https://doi.org/10.1038/jhg.2014.72

    Article  CAS  PubMed  Google Scholar 

  20. Ait-Aissa K, Heisner JS, Norwood Toro LE et al (2019) Telomerase deficiency predisposes to heart failure and ischemia-reperfusion injury. Front Cardiovasc Med 2(6):31. https://doi.org/10.3389/fcvm.2019.00031

    Article  CAS  Google Scholar 

  21. Melguizo-Sanchis D, Xu Y, Taheem D et al (2018) iPSC modeling of severe aplastic anemia reveals impaired differentiation and telomere shortening in blood progenitors. Cell Death Dis 9(2):128. https://doi.org/10.1038/s41419-017-0141-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cui X, Wang J, Cai Z et al (2014) Complete sequence analysis of mitochondrial DNA and telomere length in aplastic anemia. Int J Mol Med 34(5):1309–1314. https://doi.org/10.3892/ijmm.2014.1898

    Article  CAS  PubMed  Google Scholar 

  23. Pignolo RJ, Suda RK, McMillan EA et al (2008) Defects in telomere maintenance molecules impair osteoblast differentiation and promote osteoporosis. Aging Cell 7(1):23–31. https://doi.org/10.1111/j.1474-9726.2007.00350.x

    Article  CAS  PubMed  Google Scholar 

  24. Valdes AM, Richards JB, Gardner JP et al (2007) Telomere length in leukocytes correlates with bone mineral density and is shorter in women with osteoporosis. Osteoporos Int 18(9):1203–1210. https://doi.org/10.1007/s00198-007-0357-5

    Article  CAS  PubMed  Google Scholar 

  25. Wu Y, Cui W, Zhang D, Wu W, Yang Z (2017) The shortening of leukocyte telomere length relates to DNA hypermethylation of LINE-1 in type 2 diabetes mellitus. Oncotarget 8(43):73964–73973. https://doi.org/10.18632/oncotarget.18167

    Article  PubMed  PubMed Central  Google Scholar 

  26. Tajbakhsh S, Aliakbari K, Hussey DJ, Lower KM, Donato AJ, Sokoya EM (2015) Differential telomere shortening in blood versus arteries in an animal model of type 2 diabetes. J Diabetes Res 2015:153829. https://doi.org/10.1155/2015/153829

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tamura Y, Izumiyama-Shimomura N, Kimbara Y et al (2014) β-cell telomere attrition in diabetes: inverse correlation between HbA1c and telomere length. J Clin Endocrinol Metab 99(8):2771–2777. https://doi.org/10.1210/jc.2014-1222

    Article  CAS  PubMed  Google Scholar 

  28. Mazidi M, Rezaie P, Covic A et al (2017) Telomere attrition, kidney function, and prevalent chronic kidney disease in the United States. Oncotarget 8(46):80175–80181. https://doi.org/10.18632/oncotarget.20706

    Article  PubMed  PubMed Central  Google Scholar 

  29. Weng X, Zhang H, Kan M et al (2015) Leukocyte telomere length is associated with advanced age-related macular degeneration in the Han Chinese population. Exp Gerontol 69:36–40. https://doi.org/10.1016/j.exger.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  30. Scarabino D, Veneziano L, Peconi M, Frontali M, Mantuano E, Corbo RM (2019) Leucocyte telomere shortening in Hutington’s disease. J Neurol Sci 396:25–29. https://doi.org/10.1016/j.jns.2018.10.024

    Article  CAS  PubMed  Google Scholar 

  31. Gamal RM, Hammam N, Zakary MM et al (2018) Telomere dysfunction-related serological markers and oxidative stress markers in rheumatoid arthritis patients: correlation with diseases activity. Clin Rheumatol 37(12):3239–3246. https://doi.org/10.1007/s10067-018-4318-5

    Article  PubMed  Google Scholar 

  32. Blinova EA, Zinnatova EV, Barkovskaya MSh et al (2016) Telomere length of individual chromosomes in patients with rheumatoid arthritis. Bull Exp Biol Med 160(6):779–782. https://doi.org/10.1007/s10517-016-3308-3

    Article  CAS  PubMed  Google Scholar 

  33. Laish I, Mari A, Mannasse B et al (2018) Telomere length, aggregates, and capture in cirrhosis. Isr Med Assoc J 5(20):295–299

    Google Scholar 

  34. Sasaki M, Ikeda H, Yamaguchi J, Nakada S, Nakanuma Y (2008) Telomere shortening in the damaged small bile ducts in primary biliary cirrhosis reflects ongoing cellular senescence. Hepatology 48(1):186–195. https://doi.org/10.1002/hep.22348

    Article  PubMed  Google Scholar 

  35. Wright WE, Piatyszek MA, Rainey WE, Byrd W, Shay JW (1996) Telomerase activity in human germline and embryonic tissues and cells. Dev Genet 18(2):173–179. https://doi.org/10.1002/(sici)1520-6408(1996)18:2%3C173:aid-dvg10%3E3.0.co;2-3

    Article  CAS  PubMed  Google Scholar 

  36. Podlevsky JD, Chen JJ (2012) It all comes together at the ends: telomerase structure, function and biogenesis. Mutat Res 730(1–2):3–11. https://doi.org/10.1016/j.mrfmmm.2011.11.002

    Article  CAS  PubMed  Google Scholar 

  37. Chiodi I, Mondello C (2012) Telomere-independent functions of telomerase in nuclei, cytoplasm and mitochondria. Front Oncol 2:133. https://doi.org/10.3389/fonc.2012.00133

    Article  PubMed  PubMed Central  Google Scholar 

  38. Maida Y, Masutomi K (2011) RNA-dependent RNA polymerases in RNA silencing. Biol Chem 392(4):299–304. https://doi.org/10.1515/bc.2011.035

    Article  CAS  PubMed  Google Scholar 

  39. Masutomi K, Possemato R, Wong JM et al (2005) The telomerase reverse transcriptase regulates chromatin state and DNA damage responses. Proc Natl Acad Sci USA 102(23):8222–8227. https://doi.org/10.1073/pnas.0503095102

    Article  CAS  Google Scholar 

  40. Lee J, Sung YH, Cheong C et al (2008) TERT promotes cellular and organismal survival independently of telomerase activity. Oncogene 27(26):3754–3760. https://doi.org/10.1038/sj.onc.1211037

    Article  CAS  PubMed  Google Scholar 

  41. Moher D, Liberati A, Tetzlaff J, Altman DG, PRISMA Group (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151:264–269. https://doi.org/10.1371/journal.pmed.1000097

    Article  Google Scholar 

  42. Rudolph KL, Chang S, Millard M, Schreiber-Agus N, DePinho RA (2000) Inhibition of experimental liver cirrhosis in mice by telomerase gene delivery. Science 287(5456):1253–1258. https://doi.org/10.1126/science.287.5456.1253

    Article  CAS  PubMed  Google Scholar 

  43. Mogford JE, Liu WR, Reid R et al (2006) Adenoviral human telomerase reverse transcriptase dramatically improves ischemic wound healing without detrimental immune response in an aged rabbit model. Hum Gene Ther 17(6):651–660. https://doi.org/10.1089/hum.2006.17.651

    Article  CAS  PubMed  Google Scholar 

  44. Bernardes de Jesus B, Schneeberger K, Vera E, Tejera A, Harley CB, Blasco MA (2011) The telomerase activator TA-65 elongates short telomeres and increases health span of adult/old mice without increasing cancer incidence. Aging Cell 10(4):604–21. https://doi.org/10.1111/j.1474-9726.2011.00700.x

    Article  CAS  PubMed  Google Scholar 

  45. Makino N, Maeda T, Oyama J et al (2011) Antioxidant therapy attenuates myocardial telomerase activity reduction in superoxide dismutase-deficient mice. J Mol Cell Cardiol 50(4):670–677. https://doi.org/10.1016/j.yjmcc.2010.12.014

    Article  CAS  PubMed  Google Scholar 

  46. Bernardes de Jesus B, Vera E, Schneeberger K et al (2012) Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med 4(8):691–704. https://doi.org/10.1002/emmm.201200245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Eitan E, Tichon A, Gazit A, Gitler D, Slavin S, Priel E (2012) Novel telomerase-increasing compound in mouse brain delays the onset of amyotrophic lateral sclerosis. EMBO Mol Med 4(4):313–329. https://doi.org/10.1002/emmm.201200212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shuai L, Li X, He Q et al (2012) Angiogenic effect of endothelial progenitor cells transfected with telomerase reverse transcriptase on peritubular microvessel in five out of six subtotal nephrectomy rats. Ren Fail 34(10):1270–1280. https://doi.org/10.3109/0886022x.2012.723592

    Article  CAS  PubMed  Google Scholar 

  49. Le Saux CJ, Davy P, Brampton C et al (2013) A novel telomerase activator suppresses lung damage in a murine model of idiopathic pulmonary fibrosis. PLoS One 8(3):e58423. https://doi.org/10.1371/journal.pone.0058423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Madonna R, Taylor DA, Geng YJ et al (2013) Transplantation of mesenchymal cells rejuvenated by the overexpression of telomerase and myocardin promotes revascularization and tissue repair in a murine model of hindlimb ischemia. Circ Res 113(7):902–914. https://doi.org/10.1161/circresaha.113.301690

    Article  CAS  PubMed  Google Scholar 

  51. Bär C, Bernardes de Jesus B, Serrano R et al (2014) Telomerase expression confers cardioprotection in the adult mouse heart after acute myocardial infarction. Nat Commun 5:5863. https://doi.org/10.1038/ncomms6863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mouraret N, Houssaïni A, Abid S et al (2015) Role for telomerase in pulmonary hypertension. Circulation 131(8):742–755. https://doi.org/10.1161/circulationaha.114.013258

    Article  CAS  PubMed  Google Scholar 

  53. Bär C, Povedano JM, Serrano R et al (2016) Telomerase gene therapy rescues telomere length, bone marrow aplasia, and survival in mice with aplastic anemia. Blood 127(14):1770–1779. https://doi.org/10.1182/blood-2015-08-667485

    Article  CAS  PubMed  Google Scholar 

  54. Dow CT, Harley CB (2016) Evaluation of an oral telomerase activator for early age-related macular degeneration—a pilot study. Clin Ophthalmol 10:243–249. https://doi.org/10.2147/opth.s100042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Okada M, Kim HW, Matsu-ura K, Wang YG, Xu M, Ashraf M (2016) Abrogation of age-induced MicroRNA-195 rejuvenates the senescent mesenchymal stem cells by reactivating telomerase. Stem Cells 34(1):148–159. https://doi.org/10.1002/stem.2211

    Article  CAS  PubMed  Google Scholar 

  56. Zhang Y, Chen Z, Wang T et al (2016) Treatment of diabetes mellitus-induced erectile dysfunction using endothelial progenitor cells genetically modified with human telomerase reverse transcriptase. Oncotarget 7(26):39302–39315. https://doi.org/10.18632/oncotarget.9909

    Article  PubMed  PubMed Central  Google Scholar 

  57. Huang X, Zhang S, Li F et al (2017) Effects of hUCB-MSCs on recovery of neurological function and TERT expression in brain tissue of rats with cerebral ischemia-reperfusion injury. Exp Ther Med 14(6):5843–5846. https://doi.org/10.3892/etm.2017.5274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pawełczyk T, Grancow-Grabka M, Trafalska E, Szemraj J, Żurner N, Pawełczyk A (2018) Telomerase level increase is related to n-3 polyunsaturated fatty acid efficacy in first episode schizophrenia: secondary outcome analysis of the OFFER randomized clinical trial. Prog Neuropsychopharmacol Biol Psychiatry 83:142–148. https://doi.org/10.1016/j.pnpbp.2017.12.008

    Article  CAS  PubMed  Google Scholar 

  59. Povedano JM, Martinez P, Serrano R et al (2018) Therapeutic effects of telomerase in mice with pulmonary fibrosis induced by damage to the lungs and short telomeres. Elife 7:e31299. https://doi.org/10.7554/elife.31299

    Article  PubMed  PubMed Central  Google Scholar 

  60. Shi T, Yang X, Zhou H et al (2018) Activated carbon N-acetylcysteine microcapsule protects against nonalcoholic fatty liver disease in young rats via activating telomerase and inhibiting apoptosis. PLoS One 13(1):e0189856. https://doi.org/10.1371/journal.pone.0189856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang Y, Wang C, Jin Y et al (2018) Activating the PGC-1α/TERT pathway by catalpol ameliorates atherosclerosis via modulating ROS production, DNA damage, and telomere function: implications on mitochondria and telomere link. Oxid Med Cell Longev 2018:2876350. https://doi.org/10.1155/2018/2876350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Whittemore K, Derevyanko A, Martinez P et al (2019) Telomerase gene therapy ameliorates the effects of neurodegeneration associated to short telomeres in mice. Aging (Albany NY) 11(10):2916–2948. https://doi.org/10.18632/aging.101982

    Article  CAS  Google Scholar 

  63. Mcnelis J, Soffer S, Marini CP et al (2002) Abdominal compartment syndrome in the surgical intensive care unit. Am Surg 68(1):18–23

    PubMed  Google Scholar 

  64. Meloche J, Lampron MC, Nadeau V et al (2017) Implication of inflammation and epigenetic readers in coronary artery remodeling in patients with pulmonary arterial hypertension. Arterioscler Thromb Vasc Biol 37(8):1513–1523. https://doi.org/10.1161/atvbaha.117.309156

    Article  CAS  PubMed  Google Scholar 

  65. Lan NSH, Massam BD, Kulkarni SS, Lang CC (2018) Pulmonary arterial hypertension: pathophysiology and treatment. Diseases 6(2):E38. https://doi.org/10.3390/diseases6020038

    Article  CAS  PubMed  Google Scholar 

  66. Ma L, Li Y, Wang J (2015) Telomeres and essential hypertension. Clin Biochem 48(16–17):1195–1199. https://doi.org/10.1016/j.clinbiochem.2015.07.013

    Article  CAS  PubMed  Google Scholar 

  67. Fernandez ML, Thomas MS, Lemos BS et al (2018) TA-65, a telomerase activator improves cardiovascular markers in patients with metabolic syndrome. Curr Pharm Des 24(17):1905–1911. https://doi.org/10.2174/1381612824666180316114832

    Article  CAS  PubMed  Google Scholar 

  68. Harley CB, Liu W, Flom PL, Raffaele JM (2013) A natural product telomerase activator as part of a health maintenance program: metabolic and cardiovascular response. Rejuvenation Res 16(5):386–395. https://doi.org/10.1089/rej.2013.1430

    Article  CAS  PubMed  Google Scholar 

  69. Chen S, Yang L, Dong H, Guo H (2019) Human telomerase reverse transcriptase recruits the β-catenin/TCF-4 complex to transactivate chemokine (C-C motif) ligand 2 expression in colorectal cancer. Biomed Pharmacother 112:108700. https://doi.org/10.1016/j.biopha.2019.108700

    Article  CAS  PubMed  Google Scholar 

  70. Shen Y, Xi F, Li H, Luo Y, Chen C, Wang L (2018) Telomerase reverse transcriptase suppression inhibits cell proliferation and promotes cell apoptosis in hepatocellular cancer. IUBMB Life 70(7):642–648. https://doi.org/10.1002/iub.1758

    Article  CAS  PubMed  Google Scholar 

  71. Baena-Del Valle JA, Zheng Q, Esopi DM et al (2018) MYC drives overexpression of telomerase RNA (hTR/TERC) in prostate cancer. J Pathol 244(1):11–24. https://doi.org/10.1002/path.4980

    Article  CAS  Google Scholar 

  72. Çalışkan Can E, Atalay MC, Miser Salihoğlu E, Yalçıntaş Arslan Ü, Şimşek HB, Yardım AS (2017) Normal and tumour tissue mRNA expressions of telomerase complex genes in several types of cancer. Balkan Med J 34(3):269–274. https://doi.org/10.4274/balkanmedj.2015.1616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chiba K, Johnson JZ, Vogan JM, Wagner T, Boyle JM, Hockemeyer D (2015) Cancer-associated TERT promoter mutations abrogate telomerase silencing. Elife. https://doi.org/10.7554/elife.07918

    Article  PubMed  PubMed Central  Google Scholar 

  74. Saeednejad Zanjani L, Madjd Z, Abolhasani M et al (2019) Human telomerase reverse transcriptase protein expression predicts tumour aggressiveness and survival in patients with clear cell renal cell carcinoma. Pathology 51(1):21–31. https://doi.org/10.1016/j.pathol.2018.08.019

    Article  CAS  PubMed  Google Scholar 

  75. Amisaki M, Tsuchiya H, Sakabe T, Fujiwara Y, Shiota G (2019) Identification of genes involved in the regulation of TERT in hepatocellular carcinoma. Cancer Sci 110(2):550–560. https://doi.org/10.1111/cas.13884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Leão R, Lee D, Figueiredo A et al (2019) Combined genetic and epigenetic alterations of the TERT promoter affect clinical and biological behavior of bladder cancer. Int J Cancer 144(7):1676–1684. https://doi.org/10.1002/ijc.31935

    Article  CAS  PubMed  Google Scholar 

  77. Rachakonda S, Kong H, Srinivas N et al (2018) Telomere length, telomerase reverse transcriptase promoter mutations, and melanoma risk. Genes Chromosomes Cancer 57(11):564–572. https://doi.org/10.1002/gcc.22669

    Article  CAS  PubMed  Google Scholar 

  78. Zhang H, Hu N (2018) Telomerase reverse transcriptase induced thyroid carcinoma cell proliferation through PTEN/AKT signaling pathway. Mol Med Rep 18(2):1345–1352. https://doi.org/10.3892/mmr.2018.9119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gay-Bellile M, Véronèse L, Combes P et al (2017) TERT promoter status and gene copy number gains: effect on TERT expression and association with prognosis in breast cancer. Oncotarget 8(44):77540–77551. https://doi.org/10.18632/oncotarget.20560

    Article  PubMed  PubMed Central  Google Scholar 

  80. Xie H, Liu T, Wang N et al (2014) TERT promoter mutations and gene amplification: promoting TERT expression in Merkel cell carcinoma. Oncotarget 5(20):10048–10057. https://doi.org/10.18632/oncotarget.2491

    Article  PubMed  PubMed Central  Google Scholar 

  81. Griewank KG, Murali R, Schilling B et al (2013) TERT promoter mutations are frequent in cutaneous basal cell carcinoma and squamous cell carcinoma. PLoS One 8(11):e80354. https://doi.org/10.1371/journal.pone.0080354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jiang Y, Chen C, Chen SM et al (2013) Telomerase reverse transcriptase promotes the proliferation of human laryngeal carcinoma cells through activation of the activator protein 1. Oncol Lett 6(1):75–80. https://doi.org/10.3892/ol.2013.1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Eissa S, Motawi T, Badr S, Zaghlool A, Maher A (2013) Evaluation of urinary human telomerase reverse transcriptase mRNA and scatter factor protein as urine markers for diagnosis of bladder cancer. Clin Lab 59(3–4):317–323. https://doi.org/10.7754/clin.lab.2012.120507

    Article  CAS  PubMed  Google Scholar 

  84. Wellenhofer A, Brustmann H (2012) Expression of human telomerase reverse transcriptase in vulvar intraepithelial neoplasia and squamous cell carcinoma: an immunohistochemical study with survivin and p53. Arch Pathol Lab Med 136(11):1359–1365. https://doi.org/10.5858/arpa.2011-0440-oa

    Article  PubMed  Google Scholar 

  85. Migliaccio M, Amacker M, Just T et al (2000) Ectopic human telomerase catalytic subunit expression maintains telomere length but is not sufficient for CD8+ T lymphocyte immortalization. J Immunol 165(9):4978–4984. https://doi.org/10.4049/jimmunol.165.9.4978

    Article  CAS  PubMed  Google Scholar 

  86. Burger AM, Fiebig HH, Kuettel MR, Lautenberger JA, Kung HF, Rhim JS (1998) Effect of oncogene expression on telomerase activation and telomere length in human endothelial, fibroblast and prostate epithelial cells. Int J Oncol 13(5):1043–1048. https://doi.org/10.3892/ijo.13.5.1043

    Article  CAS  PubMed  Google Scholar 

  87. Yang J, Chang E, Cherry AM et al (1999) Human endothelial cell life extension by telomerase expression. J Biol Chem 274(37):26141–26148. https://doi.org/10.1074/jbc.274.37.26141

    Article  CAS  PubMed  Google Scholar 

  88. González-Suárez E, Samper E, Ramírez A et al (2001) Increased epidermal tumors and increased skin wound healing in transgenic mice overexpressing the catalytic subunit of telomerase, mTERT, in basal keratinocytes. EMBO J 20(11):2619–2630. https://doi.org/10.1093/emboj/20.11.2619

    Article  PubMed  PubMed Central  Google Scholar 

  89. Di Donna S, Mamchaoui K, Cooper RN et al (2003) Telomerase can extend the proliferative capacity of human myoblasts, but does not lead to their immortalization. Mol Cancer Res 1(9):643–653

    PubMed  Google Scholar 

  90. Yang G, Rosen DG, Mercado-Uribe I et al (2007) Knockdown of p53 combined with expression of the catalytic subunit of telomerase is sufficient to immortalize primary human ovarian surface epithelial cells. Carcinogenesis 28(1):174–182. https://doi.org/10.1093/carcin/bgl115

    Article  CAS  PubMed  Google Scholar 

  91. Bodnar AG, Ouellette M, Frolkis M et al (1998) Extension of life-span by introduction of telomerase into normal human cells. Science 279(5349):349–352. https://doi.org/10.1126/science.279.5349.349

    Article  CAS  PubMed  Google Scholar 

  92. Baumer Y, Funk D, Schlosshauer B (2010) Does telomerase reverse transcriptase induce functional de-differentiation of human endothelial cells? Cell Mol Life Sci 67(14):2451–2465. https://doi.org/10.1007/s00018-010-0349-z

    Article  CAS  PubMed  Google Scholar 

  93. Zhao CF, Hu HY, Meng L, Li QQ, Lin AX (2010) Immortalization of bovine mammary epithelial cells alone by human telomerase reverse transcriptase. Cell Biol Int 34(6):579–586. https://doi.org/10.1042/cbi20100006

    Article  CAS  PubMed  Google Scholar 

  94. Takenouchi T, Kitani H, Suzuki S et al (2017) Immortalization and characterization of porcine macrophages that had been transduced with lentiviral vectors encoding the SV40 large T antigen and porcine telomerase reverse transcriptase. Front Vet Sci 4:132. https://doi.org/10.3389/fvets.2017.00132

    Article  PubMed  PubMed Central  Google Scholar 

  95. Zhang L, Huang Y, Wang Z et al (2017) Establishment and characterization of a telomerase immortalized porcine luteal cells. Theriogenology 94:105–113. https://doi.org/10.1016/j.theriogenology.2017.02.008

    Article  CAS  PubMed  Google Scholar 

  96. Donai K, Kiyono T, Eitsuka T et al (2014) Bovine and porcine fibroblasts can be immortalized with intact karyotype by the expression of mutant cyclin dependent kinase 4, cyclin D, and telomerase. J Biotechnol 176:50–57. https://doi.org/10.1016/j.jbiotec.2014.02.017

    Article  CAS  PubMed  Google Scholar 

  97. Dong F, Huang Y, Li W et al (2013) The isolation and characterization of a telomerase immortalized goat trophoblast cell line. Placenta 34(12):1243–1250. https://doi.org/10.1016/j.placenta.2013.09.009

    Article  CAS  PubMed  Google Scholar 

  98. Xu Y, Yu M, Wu F et al (2009) Effects of ectopic expression of human telomerase reverse transcriptase on immortalization of feather keratinocyte stem cells. J Exp Zool B Mol Dev Evol 312(8):872–884. https://doi.org/10.1002/jez.b.21302

    Article  CAS  PubMed  Google Scholar 

  99. Shao G, Balajee AS, Hei TK, Zhao Y (2008) p16INK4a downregulation is involved in immortalization of primary human prostate epithelial cells induced by telomerase. Mol Carcinog 47(10):775–783. https://doi.org/10.1002/mc.20434

    Article  CAS  PubMed  Google Scholar 

  100. Gao K, Lu YR, Wei LL et al (2008) Immortalization of mesenchymal stem cells from bone marrow of rhesus monkey by transfection with human telomerase reverse transcriptase gene. Transplant Proc 40(2):634–637. https://doi.org/10.1016/j.transproceed.2008.01.053

    Article  CAS  PubMed  Google Scholar 

  101. Hong HX, Zhang YM, Xu H, Su ZY, Sun P (2007) Immortalization of swine umbilical vein endothelial cells with human telomerase reverse transcriptase. Mol Cells 24(3):358–363

    CAS  PubMed  Google Scholar 

  102. Nicholson IP, Gault EA, Foote CG, Nasir L, Bennett D (2007) Human telomerase reverse transcriptase (hTERT) extends the lifespan of canine chondrocytes in vitro without inducing neoplastic transformation. Vet J 174(3):570–576. https://doi.org/10.1016/j.tvjl.2007.07.009

    Article  CAS  PubMed  Google Scholar 

  103. Thadikkaran L, Menzel O, Tissot JD, Rufer N (2007) Proteomic and transcriptomic analysis of human CD8(+) T lymphocytes over-expressing telomerase. Proteom Clin Appl 1(3):299–311. https://doi.org/10.1002/prca.200600835

    Article  CAS  Google Scholar 

  104. Menzel O, Migliaccio M, Goldstein DR, Dahoun S, Delorenzi M, Rufer N (2006) Mechanisms regulating the proliferative potential of human CD8+ T lymphocytes overexpressing telomerase. J Immunol 177(6):3657–3668. https://doi.org/10.4049/jimmunol.177.6.3657

    Article  CAS  PubMed  Google Scholar 

  105. Alvero AB, Fishman DA, Qumsiyeh MB, Garg M, Kacinski BM, Sapi E (2004) Telomerase prolongs the lifespan of normal human ovarian surface epithelial cells without inducing neoplastic phenotype. J Soc Gynecol Investig 11(8):553–561. https://doi.org/10.1016/j.jsgi.2004.06.006

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Prieto-Oliveira.

Ethics declarations

Conflict of interest

The author declares that this paper has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prieto-Oliveira, P. Telomerase activation in the treatment of aging or degenerative diseases: a systematic review. Mol Cell Biochem 476, 599–607 (2021). https://doi.org/10.1007/s11010-020-03929-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03929-x

Keywords

Navigation