Skip to main content

Advertisement

Log in

Loss of photosynthesis signals a metabolic reprogramming to sustain sugar homeostasis during senescence of green leaves: Role of cell wall hydrolases

  • Review
  • Published:
Photosynthetica

Abstract

Leaf senescence is always associated with decline in photosynthesis, consequently a loss of cellular sugar. On the other hand, execution of senescence program needs energy and leaves, therefore, tend to collect sugars from other sources to sustain energy homeostasis. This sugar reprogramming induced by loss of sugar involves operation of a complex catabolic network. The exact molecular mechanism of induction and regulation of the network, however, is not fully resolved but the current literature available suggests sugar starvation as a signal for induction of several senescence-associated genes including the genes coding for the enzymes for degradation of cellular constituents and their conversion to respiratory sugars. The late expression of genes coding for the cell wall hydrolases and enhancement in the activity of these enzymes late during senescence are indicative of the cell wall polysaccharides as the last source of sugars to sustain energy homeostasis for execution of the senescence program.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

HXK1:

hexokinase 1

NPQ:

nonphotochemical quenching

PAGs :

photosynthesis-associated genes

SAGs :

senescence-associated genes

SnRK1:

sucrose non-fermenting-1-related protein kinase 1

References

  • Aguilera-Alvarado G.P., Sánchez-Nieto S.: Plant hexokinases are multifaceted proteins.–Plant Cell Physiol. 58: 1151–1160, 2017.

    Article  PubMed  CAS  Google Scholar 

  • Avila-Ospina L., Moison M., Yoshimoto K., Masclaux-Daubresse C.: Autophagy, plant senescence, and nutrient recycling.–J. Exp. Bot. 65: 3799–3811, 2014.

    Article  PubMed  Google Scholar 

  • Baena-González E., Rolland F., Thevelein J.M., Sheen J.: A central integrator of transcription networks in plant stress and energy signalling.–Nature 448: 938–943, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Biswal B., Biswal U.C.: Leaf senescence: physiology and molecular biology.–Curr. Sci. India 77: 775–782, 1999.

    CAS  Google Scholar 

  • Biswal B., Joshi P.N., Raval M.K., Biswal U.C.: Photosynthesis, a global sensor of environmental stress in green plants: stress signalling and adaptation.–Curr. Sci. India 101: 47–56, 2011.

    CAS  Google Scholar 

  • Biswal B., Mohapatra P.K., Raval M.K., Biswal U.C.: Photosynthetic regulation of senescence in green leaves: involvement of sugar signaling.–In: Itoh S., Mohanty P., Guruprasad K.N. (ed.): Photosynthesis: Overviews on Recent Progress and Future Prospectives. Pp. 245–260. IK International Publishing House, New Delhi 2012.

    Google Scholar 

  • Biswal B., Pandey J.K.: Development of chloroplast: biogenesis, senescence, and regulations.–In: Pessarakli M (ed.): Handbook of Photosynthesis, 3rd ed. Pp. 77–93. CRC Press, Boca Raton 2016.

    Google Scholar 

  • Biswal U.C., Basanti B., Raval M.K.: Chloroplast Biogenesis: from Proplastid to Gerontoplast. Pp. 353. Kluwer Academic Publishers, Dordrecht 2003.

    Book  Google Scholar 

  • Breeze E., Harrison E., McHattie S. et al.: High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation.–Plant Cell 23: 873–894, 2011.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brummell D.A., Dal Cin V., Crisosto C.H., Labavitch J.M.: Cell wall metabolism during maturation, ripening and senescence of peach fruit.–J. Exp. Bot. 55: 2029–2039, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Buchanan-Wollaston V., Page T., Harrison E. et al.: Comparative transcriptome analysis reveals significant differences in gene expression and signalling pathways between developmental and dark/starvation-induced senescence in Arabidopsis.–Plant J. 42: 567–585, 20

    Article  PubMed  CAS  Google Scholar 

  • Carrión C.A., Martínez D.E., Costa M.L., Guiamet J.J.: Senescence-associated vacuoles, a specific lytic compartment for degradation of chloroplast proteins?–Plants 3: 498–512, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chrost B., Daniel A., Krupinska K.: Regulation of α-galactosidase gene expression in primary foliage leaves of barley (Hordeum vulgare L.) during dark-induced senescence.–Planta 218: 886–889, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Costa M.L., Martínez D.E., Gomez F.M. et al.: Chloroplast protein degradation: involvement of senescence-associated vacuoles.–In: Biswal B., Krupinska K., Biswal U.C. (ed.): Plastid Development in Leaves during Growth and Senescence. Pp. 417–433. Springer, Dordrecht 2013.

    Chapter  Google Scholar 

  • Fischer A.M.: The complex regulation of senescence.–Crit. Rev. Plant Sci. 31: 124–147, 2012.

    Article  CAS  Google Scholar 

  • Franková L., Fry S.C.: Biochemistry and physiological roles of enzymes that ‘cut and paste’ plant cell-wall polysaccharides.–J. Exp. Bot. 64: 3519–3550, 2013.

    Article  PubMed  CAS  Google Scholar 

  • Fujiki Y., Nakagawa Y., Furumoto T. et al.: Response to darkness of late-responsive dark-inducible genes is positively regulated by leaf age and negatively regulated by calmodulinantagonist-sensitive signalling in Arabidopsis thaliana.–Plant Cell Physiol. 46: 1741–1746, 20

    Article  PubMed  CAS  Google Scholar 

  • Fujiki Y., Yoshikawa Y., Sato T. et al.: Dark-inducible genes from Arabidopsis thaliana are associated with leaf senescence and repressed by sugars.–Physiol. Plantarum 111: 345–352, 2001.

    Article  CAS  Google Scholar 

  • Gepstein S., Sabehi G., Carp M.-J. et al.: Large-scale identification of leaf senescence-associated genes.–Plant J. 36: 629–642, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Gregersen P.L., Foyer C.H., Krupinska K.: Photosynthesis and leaf senescence as determinants of plant productivity.–In: Kumlehn J., Stein N. (ed.): Biotechnological Approaches to Barley Improvement. Pp. 113–138. Springer, Berlin–Heidelberg 2014.

    Google Scholar 

  • Gunawardena A.H., Greenwood J.S., Dengler N.G.: Cell wall degradation and modification during programmed cell death in lace plant, Aponogeton madagascariensis (Aponogetonaceae).–Am. J. Bot. 94: 1116–1128, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Guo Y., Gan S.-S.: Convergence and divergence in gene expression profiles induced by leaf senescence and 27 senescence-promoting hormonal, pathological and environmental stress treatments.–Plant Cell Environ. 35: 644–655, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Havé M., Marmagne A., Chardon F., Masclaux-Daubresse C.: Nitrogen remobilisation during leaf senescence: lessons from Arabidopsis to crops.–J. Exp. Bot. 68: 2513–2529, 2017.

    PubMed  Google Scholar 

  • Hörtensteiner S., Feller U.: Nitrogen metabolism and remobilization during senescence.–J. Exp. Bot. 53: 927–937, 2002.

    Article  PubMed  Google Scholar 

  • Jamar C., du Jardin P., Fauconnier M.-L.: Cell wall polysaccharides hydrolysis of malting barley (Hordeum vulgare L.): a review.–Biotechnol. Agron. Soc. 15: 301–313, 2011.

    Google Scholar 

  • Joshi P., Nayak L., Misra A.N., Biswal B.: Response of mature, developing and senescing chloroplasts to environmental stress.–In: Biswal B., Krupinska K., Biswal U.C. (ed.): Plastid Development in Leaves during Growth and Senescence. Pp. 641–668. Springer, Dordrecht 2013.

    Chapter  Google Scholar 

  • Kabbage M., Kessens R., Bartholomay L.C., Williams B.: The life and death of a plant cell.–Annu. Rev. Plant Biol. 68: 375–404, 2017.

    Article  PubMed  CAS  Google Scholar 

  • Kim J., Woo H.R., Nam H.G.: Toward systems understanding of leaf senescence: an integrated multi-omics perspective on leaf senescence research.–Mol. Plant. 9: 813–825, 2016.

    Article  PubMed  CAS  Google Scholar 

  • Lee E.-J., Koizumi N., Sano H.: Identification of genes that are up-regulated in concert during sugar depletion in Arabidopsis.–Plant Cell Environ. 27: 337–345, 20

    Article  CAS  Google Scholar 

  • Lee E.-J., Matsumura Y., Soga K. et al.: Glycosyl hydrolases of cell wall are induced by sugar starvation in Arabidopsis.–Plant Cell Physiol. 48: 405–413, 20

    Article  PubMed  CAS  Google Scholar 

  • Li L., Sheen J.: Dynamic and diverse sugar signaling.–Curr. Opin. Plant Biol. 33: 116–125, 2016.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li Z., Zhao Y., Liu X. et al: LSD 2.0: an update of the leaf senescence database.–Nucleic Acids Res. 42: D1200–D1205, 2013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lichtenthaler H.K.: Plastoglobuli, thylakoids, chloroplast structure and development of plastids.–In: Biswal B., Krupinska K., Biswal U.C. (ed.): Plastid Development in Leaves during Growth and Senescence. Pp. 337–361. Springer, Dordrecht 2013.

    Chapter  Google Scholar 

  • Lim P.O., Kim H.J., Nam H.G.: Leaf senescence.–Annu. Rev. Plant Biol. 58: 115–136, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Liu X., Li Z., Jiang Z. et al.: LSD: a leaf senescence database.–Nucleic Acids Res. 39: D1103–D1107, 2010.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Minic Z.: Physiological roles of plant glycoside hydrolases.–Planta 227: 723–740, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Mohapatra P.K., Patro L., Raval M.K. et al.: Senescence-induced loss in photosynthesis enhances cell wall β-glucosidase activity.–Physiol. Plantarum 138: 346–355, 2010.

    Article  CAS  Google Scholar 

  • Moreira L.R.S., Milanezi N.G., Filho E.X.F.: Enzymology of plant cell wall breakdown: an update.–In: Buckeridge M.S., Goldman G.H. (ed.): Routes to Cellulosic Ethanol. Pp. 73–96. Springer, New York 2011.

  • Ohsumi Y.: Historical landmarks of autophagy research.–Cell Res. 24: 9–23, 2014.

    Article  PubMed  CAS  Google Scholar 

  • Ono Y., Wada S., Izumi M. et al.: Evidence for contribution of autophagy to rubisco degradation during leaf senescence in Arabidopsis thaliana.–Plant Cell Environ. 36: 1147–1159, 20

    Article  PubMed  CAS  Google Scholar 

  • Pandey J.K., Dash S.K., Biswal B.: Loss in photosynthesis during senescence is accompanied by an increase in the activity of β-galactosidase in leaves of Arabidopsis thaliana: modulation of the enzyme activity by water stress.–Protoplasma 254: 1651–1659, 2017a.

    Article  PubMed  CAS  Google Scholar 

  • Pandey J.K., Dash S.K., Biswal B.: Nitrogen-deficiency-induced loss in photosynthesis and modulation of β-galactosidase activity during senescence of Arabidopsis leaves.–Acta Physiol. Plant. 39: 75, 2017b.

    Article  CAS  Google Scholar 

  • Patro L.: Water stress induced alterations in photosynthesis and activity of enzyme(s) associated with the breakdown of cell wall polysaccharides.–PhD Thesis, Sambalpur University, India 2012.

    Google Scholar 

  • Patro L., Mohapatra P.K., Biswal U.C., Biswal B.: Dehydration induced loss of photosynthesis in Arabidopsis leaves during senescence is accompanied by the reversible enhancement in the activity of cell wall β-glucosidase.–J. Photoch. Photobio. B 137: 49–54. 2014.

    Article  CAS  Google Scholar 

  • Pourtau N., Jennings R., Pelzer E. et al.: Effect of sugar-induced senescence on gene expression and implications for the regulation of senescence in Arabidopsis.–Planta 224: 556–568, 20

    Article  PubMed  CAS  Google Scholar 

  • Pourtau N., Marès M., Purdy S. et al.: Interactions of abscisic acid and sugar signalling in the regulation of leaf senescence.–Planta 219: 765–772, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Quirino B.F., Noh Y.-S., Himelblau E., Amasino R.M.: Molecular aspects of leaf senescence.–Trends Plant Sci. 5: 278–282, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Rolland F., Baena-Gonzalez E., Sheen J.: Sugar sensing and signaling in plants: conserved and novel mechanisms.–Annu. Rev. Plant Biol. 57: 675–709, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Sabater B., Martín M.: Chloroplast control of leaf senescence.–In: Biswal B., Krupinska K., Biswal U.C. (ed.): Plastid Development in Leaves during Growth and Senescence. Pp. 529–550. Springer, Dordrecht 2013.

    Chapter  Google Scholar 

  • Sarwat M.: Leaf senescence in plants: nutrient remobilization and gene regulation.–In: Sarwat M., Ahmad A., Abdin M.Z., Ibrahim M.M. (ed.): Stress Signaling in Plants: Genomics and Proteomics Perspective, Vol. 2. Pp. 301–316. Springer International Publishing, Cham 2017.

    Google Scholar 

  • Schippers J.H.M.: Transcriptional networks in leaf senescence.–Curr. Opin. Plant Biol. 27: 77–83, 2015.

    Article  PubMed  CAS  Google Scholar 

  • Tonini P.P., Lisboa C.G.S., Silva C.O. et al.: Testa is involved in the control of storage mobilisation in seeds of Sesbania virgata (Cav.) Pers., a tropical legume tree from of the Atlantic Forest.–Trees 21: 13–21, 2007.

    Article  CAS  Google Scholar 

  • van Doorn W.G.: Is the onset of senescence in leaf cells of intact plants due to low or high sugar levels?–J. Exp. Bot. 59: 1963–1972, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Wingler A., Purdy S., MacLean J.A., Pourtau N.: The role of sugars in integrating environmental signals during the regulation of leaf senescence.–J. Exp. Bot. 57: 391–399, 2006.

    Article  PubMed  CAS  Google Scholar 

  • Wingler A., Roitsch T.: Metabolic regulation of leaf senescence: interactions of sugar signalling with biotic and abiotic stress responses.–Plant Biol. 10: 50–62, 2008.

    Article  PubMed  CAS  Google Scholar 

  • Wolf S., Hématy K., Höfte H.: Growth control and cell wall signaling in plants.–Annu. Rev. Plant Biol. 63: 381–407, 2012.

    Article  PubMed  CAS  Google Scholar 

  • Xie Q., Michaeli S., Peled-Zehavi H., Galili G.: Chloroplast degradation: one organelle, multiple degradation pathways.–Trends Plant Sci. 20: 264–265, 2015.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Biswal.

Additional information

Acknowledgements: The authors are thankful to Prof. Udaya C. Biswal for critical comments during the preparation of the manuscript and School of Life Sciences, Sambalpur University for support. The authors also wish to thank the University Grants Commission (UGC) and the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for financial support by grants to BB under UGC Emeritus Fellowship Project (No. F.6-6/2017-18/EMERITUS-2017-18-GEN-10133/(SA-II)) and CSIR Emeritus Scientist Project (No. 21(0886)/12-EMR II), respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswal, B., Pandey, J.K. Loss of photosynthesis signals a metabolic reprogramming to sustain sugar homeostasis during senescence of green leaves: Role of cell wall hydrolases. Photosynthetica 56, 404–410 (2018). https://doi.org/10.1007/s11099-018-0784-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-018-0784-x

Additional key words

Navigation