Skip to main content
Log in

The effect of CaCl2 on calcium content, photosynthesis, and chlorophyll fluorescence of tung tree seedlings under drought conditions

  • Original Paper
  • Published:
Photosynthetica

Abstract

The study investigated the effects of different CaCl2 concentrations (2, 5, and 10 mM) on photosynthetic enzymatic activities, photosynthesis, and chlorophyll fluorescence of tung tree seedlings under drought conditions. Plants were sprayed with either CaCl2 or distilled water until run-off. Irrigation was then withheld to induce drought stress. The strength of drought stress was evaluated by relative leaf water content and soil water content, which was 27.3 and 9.5% on day 0 and day 12, respectively. Drought stress decreased activities of ribulose-1,5-bisphosphate carboxylase/oxygenase and phosphoenolpyruvate carboxylase, chlorophyll (a+b) content, net photosynthetic rate, stomatal conductance, transpiration rate, electron transport rate, the maximal quantum yield of PSII photochemistry, and effective quantum yield of PSII in tung tree seedlings. The CaCl2 pretreatments alleviated the negative effect of drought stress to some degree on all the parameters mentioned above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C i :

intercellular CO2 concentration

Chl:

chlorophyll

DM:

dry mass

DAT:

day of treatment

E :

transpiration rate

ETR:

electron transport rate

FM:

fresh mass

F0 :

minimal fluorescence yield of the dark-adapted state

Fv/Fm :

maximal quantum yield of PSII photochemistry

g s :

stomatal conductance

PEPC:

phosphoenolpyruvate carboxylase

P N :

net photosynthetic rate

RWC:

relative leaf water content

SPAD values:

corresponding to content of chlorophyll (a+b)

SWC:

soil water content

ФPSII :

effective quantum yield of PSII

References

  • Ahmed S., Nawata E., Hosokawa M. et al.: Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging.–Plant Sci. 163: 117–123, 2002.

    Article  CAS  Google Scholar 

  • Akhkha A., Boutraa T., Alhejely A.: The rates of photosynthesis, chlorophyll content, dark respiration, proline and abscisic acid (ABA) in wheat (Triticum durum) under water deficit conditions.–Int. J. Agric. Biol. 13: 215–221, 2011.

    CAS  Google Scholar 

  • Allen G.J., Chu S.P., Harrington C.L. et al.: A defined range of guard cell calcium oscillation parameters encodes stomatal movements.–Nature 411: 1053–1057, 2001.

    Article  CAS  PubMed  Google Scholar 

  • Amor N.B., Megdiche W., Jiménez A. et al.: The effect of calcium on the antioxidant systems in the halophyte Cakile maritima under salt stress.–Acta Physiol. Plant. 32: 453–461, 2010.

    Article  Google Scholar 

  • Anderegg W.R.L., Kane J.M., Anderegg L.D.L.: Consequences of widespread tree mortality triggered by drought and temperature stress.–Nat. Clim. Change 3: 30–36, 2012.

    Article  Google Scholar 

  • Antosiewicz D.M., Hennig J.: Overexpression of LCT1 in tobacco enhances the protective action of calcium against cadmium toxicity.–Environ. Pollut. 129: 237–245, 2004.

    Article  CAS  PubMed  Google Scholar 

  • Arshi A., Abdin M.Z., Iqbal M.: Effect of CaCl2 on growth performance, photosynthetic efficiency and nitrogen as similation of Cichorium intybus L. grown under NaCl stress.–Acta Physiol. Plant. 28: 137–147, 2006.

    Article  CAS  Google Scholar 

  • Bamberg J.B., Palta J.P., Peterson L.A. et al.: Fine screening potato (Solanum)species germplasm for tuber calcium.–Am. J. Potato Res. 75: 181–186, 1998.

    Article  CAS  Google Scholar 

  • Barbosa A.M., Guidorizi K.A., Catuchi T.A. et al.: Biomass and bioenergy partitioning of sugarcane plants under water deficit.–Acta Physiol. Plant. 37: 142–149, 2015.

    Article  Google Scholar 

  • Bhattacharjee S.: Calcium-dependent signaling pathway in the heat-induced oxidative injury in Amaranthus lividus.–Biol. Plantarum 52: 137–140, 2008.

    Article  CAS  Google Scholar 

  • Cao H.P., Shockey J.M.: Comparison of TaqMan and SYBR green qPCR methods for quantitative gene expression in tung tree tissues.–J. Agr. Food Chem. 60: 12296–12303, 2012.

    Article  CAS  Google Scholar 

  • Cousson A.: Involvement of phospholipase C-independent calcium-mediated abscisic acid signaling during Arabidopsis response to drought.–Biol. Plantarum 53: 53–62, 2009.

    Article  CAS  Google Scholar 

  • de Souza C.R., Maroco J.P., dos Santos T.P. et al.: Control of stomatal aperture and carbon uptake by deficit irrigation in two grapevine cultivars.–Agr. Ecosyst. Environ. 106: 261–274, 2005.

    Article  Google Scholar 

  • dos Santos C.M., Silva M.D.A.: Physiological and biochemical responses of sugarcane to oxidative stress induced by water deficit and paraquat.–Acta Physiol. Plant. 37: 172, 2015.

    Article  Google Scholar 

  • Dulai S., Molnár I., Prónay J. et al.: Effects of drought on photosynthetic parameters and heat stability of PSII in wheat and in Aegilops species originating from dry habitats.–Acta Biol. Szeged. 50: 11–17, 2006.

    Google Scholar 

  • Engelbrecht B.M.J., Comita L.S., Condit R. et al.: Drought sensitivity shapes species distribution patterns in tropical forests.–Nature 447: 80–82, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Farquhar G.D., Sharkey T.D.: Stomatal conductance and photosynthesis.–Annu. Rev. Plant Physio. 33: 317–345, 1982.

    Article  CAS  Google Scholar 

  • Flato G., Marotzke J., Abiodun B. et al.: Evaluation of climate models.–In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Pp. 741–866. Cambridge Univ. Press, Cambridge and NewYork 2013.

    Google Scholar 

  • Genty B., Briantais J.M., Baker N.R.: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.–Biochim. Biophys. Acta. 990: 87–92, 1989.

    Article  CAS  Google Scholar 

  • Gzik A.: Accumulation of proline and pattern of amino acids in sugarbeet plants in response to osmotic, water and salt stress.–Environ Exp. Bot. 36: 29–38, 1996.

    Article  CAS  Google Scholar 

  • Hojati M., Modarres-Sanavy S.A.M., Ghanati F. et al.: Hexaconazole induces antioxidant protection and apigenin-7-glucoside accumulation in Matricaria chamomilla plants subjected to drought stress.–J. Plant Physiol. 168: 782–791, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Ishibashi Y., Yamaguchi H., Yuasa T. et al.: Hydrogen peroxide spraying alleviates drought stress in soybean plants.–J. Plant Physiol. 168: 1562–1567, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Jones R.G., Lunt O.R.: The function of calcium in plants.–Bot. Rev. 33: 407–426, 1967.

    Article  CAS  Google Scholar 

  • Kim M.C., Chung W.S., Yun D.J. et al.: Calcium and calmodulin-mediated regulation of gene expression in plants.–Mol. Plant. 2: 13–21, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowitcharoen L., Wongs-Aree C., Setha S. et al.: Changes in abscisic acid and antioxidant activity in sugar apples under drought conditions.–Sci. Hortic.-Amsterdam 193: 1–6, 2015.

    Article  CAS  Google Scholar 

  • Lawlor D.W.: Limitations to photosynthesis in water stressed leaves: stomata vs. metabolism and the role of ATP.–Ann. Bot.-London 89: 871–885, 2002.

    Article  CAS  Google Scholar 

  • Levitt J.: Responses of Plants to Environmental Stresses. Pp. 3642–3645 Academic Press, New York 1980.

    Google Scholar 

  • Li Q.M., Zhu Z.P.: [Ecological factors affecting the growth and fruiting of Vernicia fordii in Shangnan county.]–Shanxi Forest Sci. Tech. 3: 82–84, 2014. [In Chinese].

    Google Scholar 

  • Ma R., Zhang M., Li B. et al.: The effects of exogenous Ca2+ on endogenous polyamine levels and drought resistant traits of spring wheat grown under arid conditions.–J. Arid. Environ. 63: 177–190, 2005.

    Article  Google Scholar 

  • Nikolaeva M.K., Maevskaya S.N., Shugaev A.G. et al.: Effect of drought on chlorophyll content and antioxidant enzyme activities in leaves of three wheat cultivars varying in productivity.–Russ. J. Plant Physl+ 57: 87–95, 2010.

    Article  CAS  Google Scholar 

  • Niu G.H., Rodriguez D.S.: Growth and physiological responses of four rose rootstocks to drought stress.–J. Am. Soc. Hortic. Sci. 134: 202–209, 2009.

    Google Scholar 

  • Niu G.H., Rodriguez D.S., Mackay W.: Growth and physiological responses to drought stress in four oleander clones.–J. Am. Soc. Hortic. Sci. 133: 188–196, 2008.

    Google Scholar 

  • Ramachandra Reddy A., Chaitanya K., Jutur P. et al.: Differential antioxidative responses to water stress among five mulberry (Morus alba L.) cultivars.–Environ. Exp. Bot. 52: 33–42, 2004.

    Article  Google Scholar 

  • Shan C.J., Liang Z.S.: Jasmonic acid regulates ascorbate and glutathione metabolism in Agropyron cristatum leaves under water stress.–Plant Sci. 178: 130–139, 2010.

    Article  CAS  Google Scholar 

  • Shao H.B., Song W.Y., Chu L.Y.: Advances of calcium signals involved in plant anti-drought.–C.R. Biol. 331: 587–596, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Shi J.N., Wu M.X., Cha J.J.: [Studies on plant phosphoenolpyruvate carboxylase I. Separation and properties of PEP carboxylase isoenzymes.]–J. Plant Physiol. 5: 225–236, 1979. [In Chinese]

    Google Scholar 

  • Siddiqui M.H., Al-Whaibi M.H., Basalah M.O.: Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L.–Protoplasma 248: 503–511, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Siegel M.I., Lane M.D.: Ribulose-diphosphate carboxylase from spinach leaves.–Methods Enzymol. 42: 472–480, 1975.

    Article  Google Scholar 

  • Soares-Cordeiro A.S., Carmo-Silva A.E., Bernardes da Silva A. et al.: Effects of rapidly imposed water deficit on photosynthetic parameters of three C4 grasses.–Photosynthetica 47: 304–308, 2009.

    Article  CAS  Google Scholar 

  • Sperry J.S., Adler F.R., Campbell G.S. et al.: Limitation of plant water use by rhizosphere and xylem conductance: results from a model.–Plant Cell Environ. 21: 347–359, 1998.

    Article  Google Scholar 

  • Synková H., Valcke R.: Response to mild water stress in transgenic Pssu-ipt tobacco.–Physiol. Plant. 112: 513–523, 2001.

    Article  PubMed  Google Scholar 

  • Synková H., Semorádová Š., Schnablová R. et al.: Effects of biotic stress caused by Potato virus Y on photosynthesis in ipt transgenic and control Nicotiana tabacum L.–Plant Sci. 171: 607–616, 2006.

    Article  Google Scholar 

  • Tan X.F., Jiang G.X., Tan F.Y. et al.: [Research report on industrialization development strategy Vernicia fordii of in China.]–Nonwood Forest Res. 29: 1–5, 2011. [In Chinese].

    Google Scholar 

  • Upadhyaya H., Panda S.K., Dutta B.K.: CaCl2 improves post drought recovery potential in Camellia sinensis (L.) O. Kuntze.–Plant Cell Rep. 30: 495–503, 2011.

    Article  CAS  PubMed  Google Scholar 

  • Wang L.J., Li S.H.: Salicylic acid-induced heat or cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants.–Plant Sci. 170: 685–694, 2006.

    Article  CAS  Google Scholar 

  • Wei R., Liu Y., Sui Y. et al.: Effects of Ca2+ and polyethylene glycol on the chlorophyll fluorescence parameters of transgenic OsCaS rice (Oryza sativa L.).–Photosynthetica 53: 336–341, 2015.

    Article  CAS  Google Scholar 

  • Xu C.B., Li X.M., Zhang L.H.: The effect of calcium chloride on growth, photosynthesis, and antioxidant responses of Zoysia japonica under drought conditions.–PLoS ONE 8: 0068214, 2013.

    Article  Google Scholar 

  • Xu X., Peng G., Wu C. et al.: Drought inhibits photosynthetic capacity more in females than in males of Populus cathayana.–Tree Physiol. 28: 1751–1759, 2008.

    Article  PubMed  Google Scholar 

  • Yang B.Z., Liu Z.B., Zhou S.D. et al.: Exogenous Ca2+ alleviates waterlogging-caused damages to pepper.–Photosynthetica. 54: 620–629, 2016.

    Article  CAS  Google Scholar 

  • Zhao H.J., Tan J.F., Qi C.M.: Photosynthesis of Rehmannia glutinosa subjected to drought stress is enhanced by choline chloride through alleviating lipid peroxidation and increasing proline accumulation.–Plant Growth Regul. 51: 255–262, 2007.

    Article  CAS  Google Scholar 

  • Zhao W.S., Sun Y.L., Kjelgren R. et al.: Response of stomatal density and bound gas exchange in leaves of maize to soil water deficit.–Acta Physiol. Plant. 37: 1704–1713, 2015.

    Article  Google Scholar 

  • Zhou Y.C., Wang R., Liu Y. et al.: [Resistance and stable carbon isotopic composition of two species of biomass plants under osmotic stress.]–Earth Environ. 40: 485–490, 2012. [In Chinese].

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Forestry Public Welfare Industry Research Project of China (201204403), a Hunan Provincial Innovation Foundation for Postgraduates (CX2015B286).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. F. Tan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Tan, X.F., Lu, K. et al. The effect of CaCl2 on calcium content, photosynthesis, and chlorophyll fluorescence of tung tree seedlings under drought conditions. Photosynthetica 55, 553–560 (2017). https://doi.org/10.1007/s11099-016-0676-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-016-0676-x

Additional key words

Navigation