Skip to main content
Log in

Combined effects of elevated CO2 concentration and drought stress on photosynthetic performance and leaf structure of cucumber (Cucumis sativus L.) seedlings

  • Published:
Photosynthetica

Abstract

Drought stress is one of the main environmental factors limiting plant growth and productivity of many crops. Elevated carbon dioxide concentration (eCO2) can ameliorate, mitigate, or compensate for the negative impact of drought on plant growth and enable plants to remain turgid and functional for a longer period. In order to investigate the combined effects of eCO2 and drought stress on photosynthetic performance and leaf structures, we analyzed photosynthetic characteristics and structure and ultrastructure of cucumber leaves. The decline in net photosynthetic rate under moderate drought stress occurred due to stomatal limitation alone, while under severe drought stress, it was the result of stomatal and nonstomatal limitations. Conversely, eCO2 improved photosynthetic performance under moderate drought stress, increased the lengths of the palisade cells and the number of chloroplasts per palisade cell under severe drought stress, and significantly increased the grana thickness under moderate drought stress. Additionally, eCO2 significantly decreased stomatal density, stomatal widths and stomatal aperture on the abaxial surface of leaves under moderate drought stress. In conclusion, eCO2 can alleviate the negative effects of drought stress by improving the drought resistance of cucumber seedlings through stomatal modifications and leaf structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

aCO2 :

ambient [CO2]

C:

control nutrient solution

C i :

intercellular CO2 concentration

[CO2]:

CO2 concentration

E :

transpiration rate

eCO2 :

elevated [CO2]

gs:

stomatal conductance

J max :

PAR-saturated rate of electron transport

M:

moderate drought stress

Narea :

area-based leaf nitrogen concentration

P N :

net photosynthetic rate

PBS:

phosphate buffer saline

P Nmax :

CO2 assimilation maximum rate

S:

severe drought stress

TPU:

rate of triose phosphate utilization

V cmax :

maximum rate of carboxylation by Rubisco

References

  • Araus J.L., Slafer G.A., Reynolds M.P. et al.: Plant breeding and drought in C3 cereals: what should we breed for?–Ann. Bot.-London 89: 925–940, 2002.

    Article  Google Scholar 

  • Arp W.J.: Effects of source-sink relations on photosynthetic acclimation to elevated CO2.–Plant Cell Environ. 14: 869–875, 1991.

    Article  CAS  Google Scholar 

  • Bai L.P., Zhou G.S.: [Research of effect of global environment change on agricultural crops.]–Chin. J. Appl. Environ. Biol. 10: 394–397, 2004. [In Chinese]

    CAS  Google Scholar 

  • Baker J.T., Allen L.H.: Contrasting crop species responses to CO2 and temperature: rice, soybean and citrus.–Vegetatio 104: 239–260, 1993.

    Article  Google Scholar 

  • Berryman C.A., Eamus D., Duff G.A.: Stomatal responses to a range of variables in two tropical tree species grown with CO2 enrichment.–J. Exp. Bot. 45: 539–546, 1994.

    Article  CAS  Google Scholar 

  • Centritto M.: Photosynthetic limitations and carbon partitioning in cherry in response to water deficit and elevated [CO2].–Agr. Ecosyst. Environ. 106: 233–242, 2005.

    Article  CAS  Google Scholar 

  • Centritto M., Magnani F., Lee H.S.J. et al.: Interactive effects of elevated [CO2] and drought on cherry (Prunus avium) seedlings. II. Photosynthetic capacity and water relations.–New Phytol. 141: 141–153, 1999.

    Article  Google Scholar 

  • Chaves M.: Water stress in the regulation of photosynthesis in the field.–Ann. Bot.-London 89: 907–916, 2002.

    Article  CAS  Google Scholar 

  • Chen G.Y., Yong Z.H., Liao Y. et al.: Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1,5-bisphosphate regeneration limitation.–Plant Cell Physiol. 46: 1036–1045, 2005.

    Article  PubMed  CAS  Google Scholar 

  • Cheng S., Moore B.D., Seemann J.R.: Effects of short-and longterm elevated CO2 on the expression of rubulose-1,5-bisphosphate carboxylase/oxygenase genes and carbohydrate accumulation in leaves of Arabidopsis thaliana (L.) Heynh.–Plant Physiol. 116: 715–723, 1998.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Curtis P.S., Wang X.: A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology.–Oecologia 3: 299–313, 1998.

    Article  Google Scholar 

  • Donnelly P.M., Bonetta D., Tsukaya H. et al.: Cell cycling and cell enlargement in developing leaves of Arabidopsis.–Dev. Biol. 2: 407–419, 1999.

    Article  CAS  Google Scholar 

  • Douville H., Planton S., Royer J.F. et al.: Importance of vegetation feedbacks in doubled–CO2 climate experiments.–J. Geophys. Res. 105: 841–861, 2000.

    Article  Google Scholar 

  • Drake B.G., Gonzalez-Meler M.A., Long S.P.: More efficient plants: A consequence of rising atmospheric CO2?–Annu. Rev. Plant Phys. 48: 609–639, 1997.

    Article  CAS  Google Scholar 

  • Flexas J., Diaz-Espejo A., Gago J. et al.: Photosynthetic limitations in Mediterranean plants: a review.–Environ. Exp. Bot. 103: 12–23, 2014.

    Article  CAS  Google Scholar 

  • Franks P.J., Drake P.L., Beerling D.J.: Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus.–Plant Cell Environ. 32: 1737–1748, 2009.

    Article  PubMed  Google Scholar 

  • Godfray H.C.J., Garnett T.: Food security and sustainable intensification.–Philos. T. R. Soc. B 369: 2012–2073, 2014.

    Article  Google Scholar 

  • Gray J.E., Holroyd G.H., van der Lee F.M. et al.: The HIC signalling pathway links CO2 perception to stomatal development.–Nature 408: 713–716, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Guan Y.X., Dai J.Y., Lin Y.: [The photosynthetic stomatal and nonstomatal limitation of plant leaves under water stress.]–Plant Physiol. Co. 31: 293–297, 1995. [In Chinese]

    Google Scholar 

  • Hetherington A.M., Woodward F.I.: The role of stomata in sensing and driving environmental change.–Nature 424: 901–908, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Kitao M., Lei T.T., Koike T.: Interaction of drought and elevated CO2 concentration on photosynthetic down-regulation and susceptibility to photoinhibition in Japanese white birch seedlings grown with limited N availability.–Tree Physiol. 27: 727–735, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Leakey A.D.B., Ainsworth E.A., Bernacchi C.J. et al.: Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE.–J. Exp. Bot. 60: 2859–2876, 2009.

    Article  PubMed  CAS  Google Scholar 

  • Levitt J.: Responses of Plants to Environmental Stresses. Pp. 322–323. Academic Press, New York 1980.

    Google Scholar 

  • Li Q.M., Liu B.B., Wu Y. et al.: Interactive effects of drought stresses and elevated CO2 concentration on photochemistry efficiency of cucumber seedlings.–J. Integr. Plant Biol. 50: 1307–1317, 2008

    Article  PubMed  CAS  Google Scholar 

  • Lin J.X., Hu Y.X.: [Structural response of soybean leaf to elevated CO2 concentration.]–Acta Bot. Sin. 38: 31–34, 1996. [In Chinese]

    CAS  Google Scholar 

  • Liu Z.J., Guo Y.K., Bai J.G.: Exogenous hydrogen peroxide changes antioxidant enzyme activity and protects ultrastructure in leaves of two cucumber ecotypes under osmotic stress.–J. Plant Growth Regul. 29: 171–183, 2010.

    Article  CAS  Google Scholar 

  • Long S.P., Ainsworth E.A., Rogers A. et al.: Rising atmospheric carbon dioxide: plants FACE the future.–Annu. Rev. Plant Biol. 55: 591–628, 2004.

    Article  PubMed  CAS  Google Scholar 

  • Moore B.D., Cheng S.H., Sims D. et al.: The biochemical and molecular basis for photosynthetic acclimation to elevated atmospheric CO2.–Plant Cell Environ. 22: 567–582, 1999.

    Article  CAS  Google Scholar 

  • NOAA: National Oceanic and Atmospheric Administration. Global Climate Report. Available at: http://www.esrl.noaa.gov/gmd/ccgg/trends/, 2015.

  • Parry M., Rosenzweig C., Iglesias A. et al.: Effects of climate change on global food production under SRES emissions and socio-economic scenarios.–Glob. Environ. Chang. 14: 53–67, 2004.

    Article  Google Scholar 

  • Paul M.J., Foyer C.H.: Sink regulation of photosynthesis–J. Exp. Bot. 52: 1383–1400, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Pritchard S.G., Rogers H.H., Prior S.A. et al.: Elevated CO2 and plant structure: a review.–Glob. Change Biol. 5: 807–837, 1999.

    Article  Google Scholar 

  • Radoglou K.M., Jarvis P.G.: The effects of CO2 enrichment and nutrient supply on growth morphology and anatomy of Phaseolus vulgaris L. seedlings.–Ann. Bot.-London 70: 245–256, 1992.

    Article  CAS  Google Scholar 

  • Robredo A., Pérez-López U., Lacuesta M. et al.: Influence of water stress on photosynthetic characteristics in barley plants under ambient and elevated CO2 concentrations.–Biol. Plantarum 54: 285–292, 2010.

    Article  CAS  Google Scholar 

  • Robredo A, Pérez-López U., Sainz de la Maza H. et al.: Elevated CO2 alleviates the impact of drought on barley improving water status by lowering stomatal conductance and delaying its effects on photosynthesis.–Environ. Exp. Bot. 59: 252–263, 2007.

    Article  CAS  Google Scholar 

  • Sage R.F.: Acclimation of photosynthesis to increasing atmospheric CO2: The gas exchange perspective.–Photosynth. Res. 39: 351–368, 1994.

    Article  PubMed  CAS  Google Scholar 

  • Sato S., Yanagisawa S.: Characterization of metabolic states of Arabidopsis thaliana under diverse carbon and nitrogen nutrient conditions via targeted metabolomic analysis.–Plant Cell Physiol. 55: 306–319, 2014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharkey T.D., Bernacchi C.J., Farquhar G.D. et al.: Fitting photosynthetic carbon dioxide response curves for C3 leaves.–Plant Cell Environ. 30: 1035–1040, 2007.

    Article  PubMed  CAS  Google Scholar 

  • Sims D.A., Luo Y., Seemann J.R.: Comparison of photosynthetic acclimation to elevated CO2 and limited nitrogen supply in soybean.–Plant Cell Environ. 21: 945–952, 1998.

    Article  Google Scholar 

  • Stitt M.: Nitrate regulation of metabolism and growth.–Curr. Opin. Plant Biol. 2: 178–186, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Stitt M., Krapp A.: The interaction between elevated carbon dioxide and nitrogen nutrition: the physiological and molecular background.–Plant Cell Environ. 22: 583–621, 1999.

    Article  CAS  Google Scholar 

  • Vu J.C.V., Allen Jr L.H., Bowes G.: Leaf ultrastructure, carbohydrates and protein of soybeans grown under CO2 enrichment.–Environ. Exp. Bot. 29: 141–147, 1989.

    Article  CAS  Google Scholar 

  • Wang M.Y., Zhao T.H., Zhang W.W. et al.: [Effects of interactions between elevated CO2 concentration and temperature, drought on physio-ecological processes of plants.]–Agri. Res. Arid Areas 25: 99–103, 2007. [In Chinese]

    Google Scholar 

  • Wei M., Xin Y.X., Wang X.F. et al.: [Effects of CO2 enrichment on the microstructure and ultrastructure of leaves in cucumber.]–Acta Hortic. Sin. 29: 30–34, 2002. [In Chinese]

    Google Scholar 

  • Woodward F.I.: Stomatal numbers are sensitive to increases in CO2 from pre-industrial levels.–Nature 327: 617–618, 1987.

    Article  Google Scholar 

  • Wu Y.Y., Li D.Q.: [Effects of soil water stress on osmotic adjustment and chloroplast ultrastructure of winter wheat leaves.]–Acta Agri. Boreal. Sin. 16: 87–93, 2001. [In Chinese]

    Google Scholar 

  • Wulff R.D., Strain B.R.: Effects of CO2 enrichment on growth and photosynthesis in Desmodium paniculatum.–Can. J. Bot. 60: 1084–1091, 1982.

    Article  Google Scholar 

  • Yang S.T., Li Y.F., Hu Y.X. et al.: Effect of CO2 concentration doubling on the leaf morphology and structure of 10 species in Gramineae.–Acta Bot. Sin. 39: 856–868, 1997. [In Chinese]

    Google Scholar 

  • Yelle S., Beeson R.C., Trudel M.J. et al.: Acclimation of two tomato species to high atmospheric CO2. I. Sugar and starch concentrations.–Plant Physiol. 90: 1465–1472, 1989.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan H.M., Zhou J.M., Duan Z.Q. et al.: [Effects of elevated CO2 and potassium on cucumber growth.]–Soil 41: 869–874, 2009. [In Chinese]

    CAS  Google Scholar 

  • Zhang D.Y., Chen G.Y., Chen J. et al.: Photosynthetic acclimation to CO2 enrichment related to ribulose-1,5-bisphosphate carboxylation limitation in wheat.–Photosynthetica 47: 152–154, 2009.

    Article  CAS  Google Scholar 

  • Zuo B.Y., Jiang G.Z., Bai K.Z. et al.: Effect of doubled-CO2 concentration on the ultrastructure of chloroplasts from Medicago sativa and Setaria italica.–Acta Bot. Sin. 38: 72–76, 1996. [In Chinese]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. M. Li.

Additional information

Acknowledgments: This study was supported by National Natural Science Foundation of China (31471918), Natural Science Foundation of Shandong Province (ZR2013CM008), Colleges and Universities in Shandong Province Science and Technology Projects (J14LF06), and Major Application Technology Innovation Project of Shandong Province. We are very grateful to Berkley J. Walker (Institute for Genomic Biology, University of Illinois at Urbana–Champaign, USA) for helping us to revise our manuscript. We are grateful to the reviewers for their helpful comments and suggestions.

Electronic supplementary material

11099_2017_753_MOESM1_ESM.pdf

Fig. 1S. Dynamics of air temperature, relative humidity light intensity in the Open-Top-Greenhouses during treatments. The averages [CO2] in elevated and ambient CO2 greenhouses were 400 μmol mol-1 and 800 μmol mol-1, respectively.

11099_2017_753_MOESM2_ESM.pdf

Fig. 2S. Effects of drought stresses and elevated CO2 on the parameters of photosynthetic gas exchange in cucumber seedlings. Air temperature, relative humidity, [CO2], and PAR were 27.5 and 28.6 °C, 47.1 and 43.4%, 795 and 398 μmol mol-1, and 672 and 687 μmol(photon) m-2 s-1 in the elevated CO2 and ambient CO2 greenhouses, respectively. Bars represent least squared mean values ± SD (n = 6) for treatments. Different lowercase letters were statistically different at the P < 0.05 level. (A) Photosynthetic rate (PN); (B) transpiration rate (E); (C) intercellular CO2 concentration (Ci); and (D) stomatal conductance (gs).

11099_2017_753_MOESM3_ESM.pdf

Fig. 3S. Effects of drought stresses and eCO2 on adaxial surface of cucumber seedling leaves. A, B, C, D, E, and F represent EC, AC, EM, AM, ES and AS treatments, where A represents aCO2, E represents eCO2, and C, M, and S represent control, medium and severe drought stresses, respectively. St: stomata; Me: mesophyll cell. 1,000 ×, scale bars = 10 μm.

Fig. 4S. Effect of drought stress and elevated CO2 on leaf area.

Fig. 5S. Effect of drought stress and elevated CO2 on PN/Ci curve.

Fig. 6S. Effect of drought stress and elevated CO2 on starch content.

11099_2017_753_MOESM7_ESM.pdf

Table 1S. Effects of drought stress and elevated CO2 concentration on mesophyll cell sizes in cucumber seedling leaf cells. A — ambient CO2 concentration; E — elevated CO2 concentration; C — control; M — medium drought stress; S — severe drought stress.

11099_2017_753_MOESM8_ESM.pdf

Table 2S. Effects of drought stresses and elevated CO2 concentration on chloroplast and starch grain sizes in cucumber seedling leaf cells. A — ambient CO2 concentration; E — elevated CO2 concentration; C — control; M — medium drought stress; S — severe drought stress.

11099_2017_753_MOESM9_ESM.pdf

Table 3S. Effects of drought stress and elevated CO2 concentration on grana thickness and lamella numbers in cucumber seedling leaf cells. A — ambient CO2 concentration; E — elevated CO2 concentration; C — control; M — medium drought stress; S — severe drought stress.

Fig. 1S. Daily precipitation and mean temperature at the study sites in 2011.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B.B., Li, M., Li, Q.M. et al. Combined effects of elevated CO2 concentration and drought stress on photosynthetic performance and leaf structure of cucumber (Cucumis sativus L.) seedlings. Photosynthetica 56, 942–952 (2018). https://doi.org/10.1007/s11099-017-0753-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11099-017-0753-9

Additional key words

Navigation