Skip to main content
Log in

Green Tea Catechins Decrease Solubility of Raloxifene In Vitro and Its Systemic Exposure in Mice

  • Original Research Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Green tea is a widely consumed beverage. A recent clinical study reported green tea decreased systemic exposure of raloxifene and its glucuronide metabolites by 34–43%. However, the underlying mechanism(s) remains unknown. This study investigated a change in raloxifene’s solubility as the responsible mechanism.

Methods

The effects of green tea extract, (–)-epigallocatechin gallate (EGCG), and (–)-epigallocatechin (EGC) on raloxifene’s solubility were assessed in fasted state simulated intestinal fluids (FaSSIF) and fed state simulated intestinal fluids (FeSSIF). EGCG and EGC represent green tea’s main bioactive constituents, flavan-3-gallate and flavan-3-ol catechins respectively, and the tested concentrations (mM) match the µg/mg of each compound in the extract. Our mouse study (n = 5/time point) evaluated the effect of green tea extract and EGCG on the systemic exposure of raloxifene.

Results

EGCG (1 mM) and EGC (1.27 mM) decreased raloxifene’s solubility in FaSSIF by 78% and 13%, respectively. Micelle size in FaSSIF increased with increasing EGCG concentrations (> 1000% at 1 mM), whereas EGC (1.27 mM) did not change micelle size. We observed 3.4-fold higher raloxifene solubility in FeSSIF compared to FaSSIF, and neither green tea extract nor EGCG significantly affected raloxifene solubility or micelle size in FeSSIF. The mice study showed that green tea extract significantly decreased raloxifene Cmax by 44%, whereas EGCG had no effect. Green tea extract and EGCG did not affect the AUC0-24 h of raloxifene or the metabolite-to-parent AUC ratio.

Conclusions

This study demonstrated flavan-3-gallate catechins may decrease solubility of poorly water-soluble drugs such as raloxifene, particularly in the fasted state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data supporting the findings of this study are included within the paper.

Abbreviations

AUC:

Area under the plasma concentration versus time curve

BDDCS:

Biopharmaceutics drug disposition classification system

Cg:

( +)-Catechin gallate

Cmax :

Maximum plasma concentration

EGC:

(–)-Epigallocatechin

EGCG:

(–) -Epigallocatechin gallate

FaSSIF:

Fasted state simulated intestinal fluid

FeSSIF:

Fed state simulated intestinal fluid

Gcg:

(–)-Gallocatechin gallate

tmax :

Time to Cmax

UHPLC:

Ultra-high performance liquid chromatography

References

  1. Harbowy ME, Balentine DA, Davies AP, Cai Y. Tea Chemistry. CRC Crit Rev Plant Sci. 1997;16:415–80. https://doi.org/10.1080/07352689709701956.

    Article  CAS  Google Scholar 

  2. Tea Association of the USA Inc. Tea Fact Sheet n.d. https://www.teausa.com/14655/tea-fact-sheet. Accessed 6 Mar 2023.

  3. UN Comtrade. Leading green tea importing countries worldwide in 2021 (in million U.S. dollars). 2022.

  4. Lin Y-S, Tsai Y-J, Tsay J-S, Lin J-K. Factors affecting the levels of tea polyphenols and caffeine in tea leaves. J Agric Food Chem. 2003;51:1864–73. https://doi.org/10.1021/jf021066b.

    Article  CAS  PubMed  Google Scholar 

  5. Chaturvedula VSP, Prakash I. The aroma, taste, color and bioactive constituents of tea. J Med Plants Res. 2011;5:2110–24. https://doi.org/10.5897/JMPR.9001187.

    Article  CAS  Google Scholar 

  6. Yang CS, Pan E. The effects of green tea polyphenols on drug metabolism. Expert Opin Drug Metab Toxicol. 2012;8:677–89. https://doi.org/10.1517/17425255.2012.681375.

    Article  CAS  PubMed  Google Scholar 

  7. Wang Z-M, Chen B, Zhou B, Zhao D, Wang L-S. Green tea consumption and the risk of stroke: A systematic review and meta-analysis of cohort studies. Nutrition. 2023;107:111936. https://doi.org/10.1016/j.nut.2022.111936.

    Article  CAS  PubMed  Google Scholar 

  8. Mhatre S, Srivastava T, Naik S, Patravale V. Antiviral activity of green tea and black tea polyphenols in prophylaxis and treatment of COVID-19: A review. Phytomedicine. 2021;85:153286. https://doi.org/10.1016/j.phymed.2020.153286.

    Article  CAS  PubMed  Google Scholar 

  9. Wada K, Oba S, Tsuji M, Goto Y, Mizuta F, Koda S, et al. Green tea intake and colorectal cancer risk in Japan: the Takayama study. Jpn J Clin Oncol. 2019;49:515–20. https://doi.org/10.1093/jjco/hyz030.

    Article  PubMed  Google Scholar 

  10. Khan N, Mukhtar H. Tea and health: studies in humans. Curr Pharm Des. 2013;19:6141–7. https://doi.org/10.2174/1381612811319340008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Organic green tea retail sales value in the United States 2021 | Statista n.d. https://www.statista.com/statistics/1378291/retail-sales-value-of-organic-green-tea-in-the-united-states/. Accessed 16 Sep 2023.

  12. Zeng W, Lao S, Guo Y, Wu Y, Huang M, Tomlinson B, et al. The Influence of EGCG on the Pharmacokinetics and Pharmacodynamics of Bisoprolol and a New Method for Simultaneous Determination of EGCG and Bisoprolol in Rat Plasma. Front Nutr. 2022;9:907986. https://doi.org/10.3389/fnut.2022.907986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Misaka S, Yatabe J, Müller F, Takano K, Kawabe K, Glaeser H, et al. Green tea ingestion greatly reduces plasma concentrations of nadolol in healthy subjects. Clin Pharmacol Ther. 2014;95:432–8. https://doi.org/10.1038/clpt.2013.241.

    Article  CAS  PubMed  Google Scholar 

  14. Ge J, Tan B-X, Chen Y, Yang L, Peng X-C, Li H-Z, et al. Interaction of green tea polyphenol epigallocatechin-3-gallate with sunitinib: potential risk of diminished sunitinib bioavailability. J Mol Med (Berl). 2011;89:595–602. https://doi.org/10.1007/s00109-011-0737-3.

    Article  CAS  PubMed  Google Scholar 

  15. Clarke JD, Judson SM, Tian D, Kirby TO, Tanna RS, Matula-Péntek A, et al. Co-consuming green tea with raloxifene decreases raloxifene systemic exposure in healthy adult participants. Clin Transl Sci. 2023. https://doi.org/10.1111/cts.13578.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dahan A, Miller JM. The solubility-permeability interplay and its implications in formulation design and development for poorly soluble drugs. AAPS J. 2012;14:244–51. https://doi.org/10.1208/s12248-012-9337-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Holm R, Müllertz A, Mu H. Bile salts and their importance for drug absorption. Int J Pharm. 2013;453:44–55. https://doi.org/10.1016/j.ijpharm.2013.04.003.

    Article  CAS  PubMed  Google Scholar 

  18. Porat D, Dahan A. Active intestinal drug absorption and the solubility-permeability interplay. Int J Pharm. 2018;537:84–93. https://doi.org/10.1016/j.ijpharm.2017.10.058.

    Article  CAS  PubMed  Google Scholar 

  19. Bocci G, Oprea TI, Benet LZ. State of the Art and Uses for the Biopharmaceutics Drug Disposition Classification System (BDDCS): New Additions, Revisions, and Citation References. AAPS J. 2022;24:37. https://doi.org/10.1208/s12248-022-00687-0.

    Article  CAS  PubMed  Google Scholar 

  20. Du T, Sun R, Li L, Ebuzoeme C, Bui D, Zheng Z, et al. Development and validation of ultra-high-performance liquid chromatography-mass spectrometry method for the determination of raloxifene and its phase II metabolites in plasma: Application to pharmacokinetic studies in rats. J Sep Sci. 2020;43:4414–23. https://doi.org/10.1002/jssc.202000835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hochner-Celnikier D. Pharmacokinetics of raloxifene and its clinical application. Eur J Obstet Gynecol Reprod Biol. 1999;85:23–9. https://doi.org/10.1016/S0301-2115(98)00278-4.

    Article  CAS  PubMed  Google Scholar 

  22. Wang Z, Li Y. Raloxifene/SBE-β-CD Inclusion Complexes Formulated into Nanoparticles with Chitosan to Overcome the Absorption Barrier for Bioavailability Enhancement. Pharmaceutics. 2018;10:76. https://doi.org/10.3390/pharmaceutics10030076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Murthy A, Rao Ravi P, Kathuria H, Malekar S. Oral Bioavailability Enhancement of Raloxifene with Nanostructured Lipid Carriers. Nanomaterials. 2020;10:1085. https://doi.org/10.3390/nano10061085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hosny KM, Bahmdan RH, Alhakamy NA, Alfaleh MA, Ahmed OA, Elkomy MH. Physically Optimized Nano-Lipid Carriers Augment Raloxifene and Vitamin D Oral Bioavailability in Healthy Humans for Management of Osteoporosis. J Pharm Sci. 2020;109:2145–55. https://doi.org/10.1016/j.xphs.2020.03.009.

    Article  CAS  PubMed  Google Scholar 

  25. Sakakibara T, Sawada Y, Wang J, Nagaoka S, Yanase E. Molecular Mechanism by Which Tea Catechins Decrease the Micellar Solubility of Cholesterol. J Agric Food Chem. 2019;67:7128–35. https://doi.org/10.1021/acs.jafc.9b02265.

    Article  CAS  PubMed  Google Scholar 

  26. Ogawa K, Hirose S, Nagaoka S, Yanase E. Interaction between Tea Polyphenols and Bile Acid Inhibits Micellar Cholesterol Solubility. J Agric Food Chem. 2016;64:204–9. https://doi.org/10.1021/acs.jafc.5b05088.

    Article  CAS  PubMed  Google Scholar 

  27. Kellogg JJ, Graf TN, Paine MF, McCune JS, Kvalheim OM, Oberlies NH, et al. Comparison of Metabolomics Approaches for Evaluating the Variability of Complex Botanical Preparations: Green Tea (Camellia sinensis) as a Case Study. J Nat Prod. 2017;80:1457–66. https://doi.org/10.1021/acs.jnatprod.6b01156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. McFarland JW, Avdeef A, Berger CM, Raevsky OA. Estimating the Water Solubilities of Crystalline Compounds from Their Chemical Structures Alone. J Chem Inf Comput Sci. 2001;41:1355–9. https://doi.org/10.1021/ci0102822.

    Article  CAS  PubMed  Google Scholar 

  29. Biorelevant.com. Media prep tool n.d. https://biorelevant.com/#media_prep_tool_tab. Accessed 6 Mar 2023.

  30. Klumpp L, Leigh M, Dressman J. Dissolution behavior of various drugs in different FaSSIF versions. Eur J Pharm Sci. 2020;142:105138. https://doi.org/10.1016/J.EJPS.2019.105138.

    Article  CAS  PubMed  Google Scholar 

  31. Kalam A, Talegaonkar S, Vohora D. Effects of raloxifene against letrozole-induced bone loss in chemically-induced model of menopause in mice. Mol Cell Endocrinol. 2017;440:34–43. https://doi.org/10.1016/j.mce.2016.11.005.

    Article  CAS  PubMed  Google Scholar 

  32. Yang ZhY, Zhang ZhF, He XB, Zhao GY, Zhang YQ. Validation of a Novel HPLC Method for the Determination of Raloxifene and Its Pharmacokinetics in Rat Plasma. Chromatographia. 2007;65:197–201. https://doi.org/10.1365/s10337-006-0123-4.

    Article  CAS  Google Scholar 

  33. Trontelj J, Bogataj M, Marc J, Mrhar A. Development and validation of a liquid chromatography–tandem mass spectrometry assay for determination of raloxifene and its metabolites in human plasma. J Chromatogr B. 2007;855:220–7. https://doi.org/10.1016/j.jchromb.2007.05.004.

    Article  CAS  Google Scholar 

  34. Rajagopaludu P, Saritha N, Devanna N, Srinivas M. Method development and validation of anabasine and nornicotine in human plasma by LC-MS/MS. J Pharm Res Int. 2021:7–17. https://doi.org/10.9734/jpri/2021/v33i1731301.

  35. Zhang J, Shao B, Yin J, Wu Y, Duan H. Simultaneous detection of residues of β-adrenergic receptor blockers and sedatives in animal tissues by high-performance liquid chromatography/tandem mass spectrometry. J Chromatogr B. 2009;877:1915–22. https://doi.org/10.1016/j.jchromb.2009.05.025.

    Article  CAS  Google Scholar 

  36. Teleki A, Nylander O, Bergström CAS. Intrinsic Dissolution Rate Profiling of Poorly Water-Soluble Compounds in Biorelevant Dissolution Media. Pharmaceutics. 2020;12:493. https://doi.org/10.3390/pharmaceutics12060493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Riethorst D, Baatsen P, Remijn C, Mitra A, Tack J, Brouwers J, et al. An In-Depth View into Human Intestinal Fluid Colloids: Intersubject Variability in Relation to Composition. Mol Pharm. 2016;13:3484–93. https://doi.org/10.1021/acs.molpharmaceut.6b00496.

    Article  CAS  PubMed  Google Scholar 

  38. Jamil R, Polli JE. Prediction of In Vitro Drug Dissolution into Fed-state Biorelevant Media: Contributions of Solubility Enhancement and Relatively Low Colloid Diffusivity. Eur J Pharm Sci. 2022;173:106179. https://doi.org/10.1016/j.ejps.2022.106179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Albassam AA, Markowitz JS. An Appraisal of Drug-Drug Interactions with Green Tea (Camellia sinensis). Planta Med. 2017;83:496–508. https://doi.org/10.1055/s-0043-100934.

    Article  CAS  PubMed  Google Scholar 

  40. Raederstorff DG, Schlachter MF, Elste V, Weber P. Effect of EGCG on lipid absorption and plasma lipid levels in rats. J Nutr Biochem. 2003;14:326–32. https://doi.org/10.1016/s0955-2863(03)00054-8.

    Article  CAS  PubMed  Google Scholar 

  41. Ikeda H, Yamanaka M, Takahashi S, Ohata T, Yukawa M, Nakashima R, et al. Drug-Tea Polyphenol Interaction (III) Incompatibility between Aripiprazole Oral Solution and Green Tea. Chem Pharm Bull (Tokyo). 2022;70:230–4. https://doi.org/10.1248/cpb.c21-00746.

    Article  CAS  PubMed  Google Scholar 

  42. Riethorst D, Mols R, Duchateau G, Tack J, Brouwers J, Augustijns P. Characterization of Human Duodenal Fluids in Fasted and Fed State Conditions. J Pharm Sci. 2016;105:673–81. https://doi.org/10.1002/jps.24603.

    Article  CAS  PubMed  Google Scholar 

  43. Flanagan T, Van Peer A, Lindahl A. Use of physiologically relevant biopharmaceutics tools within the pharmaceutical industry and in regulatory sciences: Where are we now and what are the gaps? Eur J Pharm Sci. 2016;91:84–90. https://doi.org/10.1016/j.ejps.2016.06.006.

    Article  CAS  PubMed  Google Scholar 

  44. Dahlgren D, Venczel M, Ridoux J-P, Skjöld C, Müllertz A, Holm R, et al. Fasted and fed state human duodenal fluids: Characterization, drug solubility, and comparison to simulated fluids and with human bioavailability. Eur J Pharm Biopharm. 2021;163:240–51. https://doi.org/10.1016/j.ejpb.2021.04.005.

    Article  CAS  PubMed  Google Scholar 

  45. Wu C, Benet LZ. Predicting drug disposition via application of BCS: Transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res. 2005;22:11–23. https://doi.org/10.1007/s11095-004-9004-4.

    Article  CAS  PubMed  Google Scholar 

  46. Golden EB, Lam PY, Kardosh A, Gaffney KJ, Cadenas E, Louie SG, et al. Green tea polyphenols block the anticancer effects of bortezomib and other boronic acid-based proteasome inhibitors. Blood. 2009;113:5927–37. https://doi.org/10.1182/blood-2008-07-171389.

    Article  CAS  PubMed  Google Scholar 

  47. Ohata T, Ikeda H, Inenaga M, Mizobe T, Yukawa M, Fujisawa M, et al. Drug-tea polyphenol interaction (II) complexation of piperazine derivatives with green tea polyphenol. Thermochim Acta. 2017;653:1–7. https://doi.org/10.1016/j.tca.2017.03.023.

    Article  CAS  Google Scholar 

  48. Ikeda H, Tsuji E, Matsubara T, Yukawa M, Fujisawa M, Yukawa E, et al. Incompatibility between propericiazine oral solution and tea-based drink. Chem Pharm Bull (Tokyo). 2012;60:1207–11. https://doi.org/10.1248/cpb.c12-00116.

    Article  CAS  PubMed  Google Scholar 

  49. Kobayashi M, Nishizawa M, Inoue N, Hosoya T, Yoshida M, Ukawa Y, et al. Epigallocatechin gallate decreases the micellar solubility of cholesterol via specific interaction with phosphatidylcholine. J Agric Food Chem. 2014;62:2881–90. https://doi.org/10.1021/jf405591g.

    Article  CAS  PubMed  Google Scholar 

  50. Seedher N, Kanojia M. Micellar solubilization of some poorly soluble antidiabetic drugs: a technical note. AAPS PharmSciTech. 2008;9:431–6. https://doi.org/10.1208/s12249-008-9057-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fagerberg JH, Bergström CAS. Intestinal solubility and absorption of poorly water soluble compounds: predictions, challenges and solutions. Ther Deliv. 2015;6:935–59. https://doi.org/10.4155/tde.15.45.

    Article  CAS  PubMed  Google Scholar 

  52. Misaka S, Abe O, Ono T, Ono Y, Ogata H, Miura I, et al. Effects of single green tea ingestion on pharmacokinetics of nadolol in healthy volunteers. Br J Clin Pharmacol. 2020;86:2314–8. https://doi.org/10.1111/bcp.14315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Abe O, Ono T, Sato H, Müller F, Ogata H, Miura I, et al. Role of (-)-epigallocatechin gallate in the pharmacokinetic interaction between nadolol and green tea in healthy volunteers. Eur J Clin Pharmacol. 2018;74:775–83. https://doi.org/10.1007/s00228-018-2436-2.

    Article  CAS  PubMed  Google Scholar 

  54. Muramatsu K, Fukuyo M, Hara Y. Effect of green tea catechins on plasma cholesterol level in cholesterol-fed rats. J Nutr Sci Vitaminol (Tokyo). 1986;32:613–22. https://doi.org/10.3177/jnsv.32.613.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Institutes of Health National Center for Complementary and Integrative Health grants R21 AT011101 and U54 AT008909.

Author information

Authors and Affiliations

Authors

Contributions

Participated in research design: Victoria Oyanna and John Clarke

Conducted experiments: Victoria Oyanna, Baron Bechtold, Katherine Lynch, M. Ridge Call, and John Clarke

Contributed new reagents or analytic tools: Tyler Graf and Nicholas Oberlies

Performed data analysis: Victoria Oyanna and John Clarke

Wrote or contributed to the writing of the manuscript: Victoria Oyanna and John Clarke

Corresponding author

Correspondence to John D. Clarke.

Ethics declarations

Conflicts of Interest

None

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyanna, V.O., Bechtold, B.J., Lynch, K.D. et al. Green Tea Catechins Decrease Solubility of Raloxifene In Vitro and Its Systemic Exposure in Mice. Pharm Res 41, 557–566 (2024). https://doi.org/10.1007/s11095-024-03662-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-024-03662-w

Keywords

Navigation