Skip to main content

Advertisement

Log in

Targeted Drug Delivery for Chronic Lymphocytic Leukemia

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Chronic lymphocytic leukemia (CLL) still represents an incurable disorder that may progress to other more aggressive types of cancer despite the available therapy and the development that has been reached in the immunophenotypic and mutational status characterization of CLL. Hence, innovative therapeutics strategies are required together with the advancement in chemo-immunotherapy and targeted treatments. Parallelly, more focus should be put on the drug delivery process to improve the effectiveness/toxicity ratio of both conventional and new drugs and reduce the risk of drug resistance. In the present review, different types of nanocarriers that can be harnessed against CLL, their features, their capabilities in targeting CLL cells, and the latest relevant data are discussed. We provide an integral description of each nanocarrier, including lipidic, polymeric, and inorganic carriers, aiming to offer a constructive resource for the rational design of potential nanomedicines to advance the fight against CLL.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ABC:

Accelerated blood clearance

ACS:

American cancer society

ADCC:

Antibody-dependent cellular cytotoxicity

AMOs:

Anti-miRNA oligonucleotides

APRIL:

A proliferation-inducing ligand

APTES:

3-Aminopropyl triethoxysilane

BAFF:

B-cell activating factor

BAFFR:

B-cell activating factor receptor

BCL-2:

B-cell lymphoma 2

BCMA:

B-cell maturation antigen

BCR:

B-cell receptor

BDM:

Bendamustine

BM:

Bone marrow

BTK:

Bruton tyrosine kinase

CD:

Cyclodextrin

CDC:

Complement-dependent cytotoxicity

cdk6:

Cyclin-dependent kinase 6

Chol:

Cholesterol

CLL:

Chronic lymphocytic leukemia

CPNPs:

Calcium phosphate nanoparticles

CXCL12/CXCL13:

C-X-C motif chemokine ligand 12/13

CXCR4/CXCR5:

C-X-C motif chemokine receptor type 4/5

DDS:

Drug delivery system;

Dlin-MC3-DMA:

Dilinoleylmethyl-4-dimethylaminobutyrate

DMG-PEG:

1,2-Dimyristoyl-sn-glycerol, methoxypolyethylene glycol

DMPG:

1,2-Dimyristoyl-sn-glycero-3-phospho-(19-rac-glycerol)

DMPS:

1,2-Dimyristoyl- sn-glycero-3-phospho-L-serine

DMSA:

3-Dimercaptosuccinic acid

DODAP:

1,2-Dioleyl-3-trimethyl ammonium- propane

DOPC:

1,2-Dioleoyl-sn-glycero-3-phosphocholine

DOPE:

1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine

Dox:

Doxorubicin

DS:

Dense shell

DSPC:

1,2-Distearoyl-sn-glycero-3-phosphocholine

DSPE-PEG:

N-palmitoyl-sphingosine-1- succinylpolyethylene glycol

DSPG:

Distearoylphosphatidylglycerol

DSPS:

Distearoyl phosphatidylserine

EPR:

Enhanced permeability and retention

FA:

Fludarabine

FDA:

US Food and Drug Administration

G4:

4Th generation

GMS:

Glyceryl monostearate

GNPs:

Gold nanoparticles

GLUTs:

Glucose transporters

HA:

Hyaluronic acid

HDL:

High-density lipoprotein

IBR:

Ibrutinib

IGHV:

Immunoglobulin heavy-chain genes

ILNPs:

Ionizable lipid nanoparticles

ILPs:

Immunoliposomes

IONPs:

Iron oxide nanoparticles

LNs:

Lymph nodes

LPs:

Liposomes

MABs:

Monoclonal antibodies

Mal:

Maltose

Mal-3:

Maltotriose

Mcl-1:

Myeloid cell leukemia-1

miRNA:

MicroRNA

MRI:

Magnetic resonance imaging

MS4A1:

Membrane spanning 4-domains A1

MSNPs:

Mesoporous silica nanoparticles

NLC:

Nurse-like cell

NPs:

Nanoparticles

NSLCs:

Nanostructured lipid carriers

NTs:

Nucleoside transporters

OS:

Open shell

PAMAM:

Polyamidoamine

PBMCs:

Peripheral blood mononuclear cells

PCL:

Polycaprolactone

PDI:

Polydispersity index

PEG:

Polyethylene glycol

PGA:

Polyglycolic acid;

PGMC:

Propylene glycol monocaprylate

PI3Ks:

Phosphoinositol-3-kinases

PLA:

Polylactic acid

PLGA:

Poly(lactic acid-co-glycolic acid)

PPI:

Polypropyleneimine

RES:

Reticuloendothelial system

ROR1:

Receptor tyrosine kinase orphan receptor 1

ROS:

Reactive oxygen species

RTX:

Rituximab

SBE-b-CD:

Sulfobutylether-b-cyclodextrin

SEER:

Surveillance, epidemiology, and end result

sHDL:

Synthetic high-density lipoprotein

siRNA:

Small interfering RNA

SR-B1:

Scavenger receptor type B-1

STAT3:

Signal transducer and activator of transcription 3

TACI:

Transmembrane activator and calcium modulator and cyclophin ligand interactor

TRAIL:

Tumor necrosis factor-related apoptosis-inducing ligand

TrxR:

Thioredoxin reductase

References

  1. Awan FT, Byrd JC. Chronic Lymphocytic Leukemia. In: Hoffman R, Benz EJ, Silberstein LE, Heslop HE, Weitz JI, Anastasi J et al., editors. Hematology: Basic Principles and Practice. Amsterdam: Elsevier 2018. p. 1244–64. https://doi.org/10.1016/B978-0-323-35762-3.00077-9.

  2. Nisticò N, Maisano D, Iaccino E, Vecchio E, Fiume G, Rotundo S, et al. Role of chronic lymphocytic leukemia (CLL)-derived exosomes in tumor progression and survival. Pharmaceuticals. 2020;13:244.

  3. Bosch F, Dalla-Favera R. Chronic lymphocytic leukaemia: from genetics to treatment. Nat Rev Clin Oncol. 2019;16:684–701.

    Article  CAS  PubMed  Google Scholar 

  4. Rawstron AC, Kreuzer KA, Soosapilla A, Spacek M, Stehlikova O, Gambell P, et al. Reproducible diagnosis of chronic lymphocytic leukemia by flow cytometry: An European Research Initiative on CLL (ERIC) & European Society for Clinical Cell Analysis (ESCCA) Harmonisation project. Cytom Part B - Clin Cytom. 2018;94:121–8.

    Article  CAS  Google Scholar 

  5. Rawstron AC, Tute RM, Owen RG, Hillmen P. Laboratory diagnosis of chronic lymphocytic leukaemia. In: Hallek M, Eichhorst B, Catovsky D, editors. Chronic Lymphocytic Leukemia. Cham: Springer; 2019. p. 21–35. https://doi.org/10.1007/978-3-030-11392-6_2.

  6. National Cancer Institute .Surveillance epidemiology and end results program. Cancer Stat Facts: Leukemia- Chronic Lymphocytic Leukemia CLL). Available from: https://seer.cancer.gov/statfacts/html/clyl.html. Accessed 12 Jan 2022.

  7. Burger JA, O’Brien S. Evolution of CLL treatmentfrom chemoimmunotherapy to targeted and individualized therapy. Nat Rev Clin Oncol. 2018;15:510–27.

  8. Moia R, Patriarca A, Schipani M, Ferri V, Favini C, Sagiraju S, et al. Precision medicine management of chronic lymphocytic leukemia. Cancers (Basel). 2020;12:642.

  9. Fabbri G, Dalla-favera R. The molecular pathogenesis of chronic lymphocytic leukaemia. Nat Rev Cancer. 2016;16:145–162.

  10. Sajid MI, Moazzam M, Cho Y, Kato S, Xu A, Way JJ, et al. siRNA Therapeutics for the Therapy of COVID-19 and Other Coronaviruses. Mol Pharm. 2021;18:2105–21.

    Article  CAS  PubMed  Google Scholar 

  11. Burger JA. Treatment of Chronic Lymphocytic Leukemia. N Engl J Med. 2020;383:460–73.

    Article  CAS  PubMed  Google Scholar 

  12. Scarfò L, Ghia P. Chronic lymphocytic leukemia: Who, How, and Where? In: Hallek M, Eichhorst B, Catovsky D, editors. Hematologic malignancies. Cham: Springer Nature Switzerland; 2019. https://doi.org/10.1007/978-3-030-11392-6_1.

  13. Darwiche W, Gubler B, Marolleau JP, Ghamlouch H. Chronic lymphocytic leukemia B-cell normal cellular counterpart: Clues from a functional perspective. Front Immunol. 2018:683.

  14. Yosifov DY, Wolf C, Stilgenbauer S, Mertens D. From biology to therapy: The CLL success story. Hemasphere. 2019;3:e175.

  15. Griggio V, Perutelli F, Salvetti C, Boccellato E, Boccadoro M, Vitale C, et al. Immune Dysfunctions and Immune- Based Therapeutic Interventions in Chronic Lymphocytic Leukemia. Front Immunol. 2020;11:954556.

    Article  CAS  Google Scholar 

  16. Nabhan C, Rosen ST. Chronic Lymphocytic Leukemia: A clinical review. JAMA. 2014;312:2265–76.

  17. Dennie TW, Kolesar JM. Bendamustine for the treatment of chronic lymphocytic leukemia and rituximab-refractory, indolent B-cell non-hodgkin lymphoma. Clin Ther. 2009;31:2290–311.

    Article  CAS  PubMed  Google Scholar 

  18. Al-Sawaf O, Zhang C, Tandon M, Sinha A, Fink AM, Robrecht S, et al. Venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab for previously untreated chronic lymphocytic leukaemia (CLL14): follow-up results from a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2020;21:1188–200.

    Article  CAS  PubMed  Google Scholar 

  19. Eichhorst B, Fink AM, Bahlo J, Busch R, Kovacs G, Maurer C, et al. First-line chemoimmunotherapy with bendamustine and rituximab versus fludarabine, cyclophosphamide, and rituximab in patients with advanced chronic lymphocytic leukaemia (CLL10): an international, open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol. 2016;17:928–42.

    Article  CAS  PubMed  Google Scholar 

  20. Bharti AC, Vishnoi K, Singh SM, Aggarwal BB. Pathways linked to cancer chemoresistance and their targeting by nutraceuticals. In: Bharti AC, Aggarwal BB, editors. Role of Nutraceuticals in Chemoresistance to Cancer. Amsterdam: Elsevier; 2018. p. 1–30. https://doi.org/10.1016/B978-0-12-812373-7.00001-2.

  21. Chu CS, Rubin SC. Basic principles of chemotherapy. In: DiSaia PJ, Creasman WT, Mannel RS, McMeekin DS, Mutch DG, editors. Clinical Gynecologic Oncology. Amsterdam: Elsevier; 2018. p. 449–469.e2. https://doi.org/10.1016/B978-0-323-40067-1.00017-6.

  22. Kwok KK, Vincent EC, Gibson JN. Antineoplastic Drugs. In: Dowd FJ, Johnson BS, Mariotti AJ, editors. Pharmacology and Therapeutics for Dentistry. Amsterdam: Elsevier; 2017. p. 530–62. https://doi.org/10.1016/B978-0-323-39307-2.00036-9.

  23. Hallek M. Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment. Am J Hematol. 2019;94:1266–87.

    Article  PubMed  Google Scholar 

  24. Sharma S, Rai KR. Chronic lymphocytic leukemia (CLL) treatment: So many choices, such great options. Cancer. 2019;125:1432–40.

  25. Rogers A, Woyach JA. BTK inhibitors and anti-CD20 monoclonal antibodies for treatment-naïve elderly patients with CLL. Ther Adv Hematol. 2020;11:204062072091299.

    Article  CAS  Google Scholar 

  26. Geethakumari PR, Awan F. An evaluation of zanubrutinib, a BTK inhibitor, for the treatment of chronic lymphocytic leukemia. Expert Rev Hematol. 2020;13:1039–46.

    Article  CAS  PubMed  Google Scholar 

  27. Farooqui AA, Ashraf A, Farooq T Bin, Anjum A, Rehman S ur, Akbar A, et al. Novel targeted therapies for chronic lymphocytic leukemia in elderly patients: A systematic review. Clin Lymphoma Myeloma Leuk. 2020;20:e414–26.

  28. Blair HA. Duvelisib: First Global Approval. Drugs. 2018;78:1847–53.

    Article  PubMed  Google Scholar 

  29. Shah A, Mangaonkar A. Idelalisib: A novel PI3Kδ inhibitor for chronic lymphocytic leukemia. Ann Pharmacother. 2015;49:1162–70.

    Article  CAS  PubMed  Google Scholar 

  30. Held L, Siu C, Shadman M. Venetoclax as a therapeutic option for the treatment of chronic lymphocytic leukemia: the evidence so far. Expert Opin Pharmacother. 2021;22:655–65.

    Article  CAS  PubMed  Google Scholar 

  31. Schiattone L, Ghia P, Scarfò L. The evolving treatment landscape of chronic lymphocytic leukemia. Curr Opin Oncol. 2019;31:568–73.

  32. Gribben JG. How and when I do allogeneic transplant in CLL. Blood. 2018;132:31–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang L, Huang J, Huang J, Xue H, Liang Z, Wu J, et al. Nanomedicine-a promising therapy for hematological malignancies. Biomater Sci. 2020;8:2376–93.

  34. Vinhas R, Mendes R, Fernandes AR, Baptista PV. Nanoparticles-Emerging Potential for Managing Leukemia and Lymphoma. Front Bioeng Biotechnol. 2017;5:79.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shen J, Lu Z, Wang J, Zhang T, Yang J, Li Y, et al. Advances of Nanoparticles for Leukemia Treatment. ACS Biomater Sci Eng. 2020;6:6478–89.

    Article  CAS  PubMed  Google Scholar 

  36. Soni G, Yadav KS. Applications of nanoparticles in treatment and diagnosis of leukemia. Mater Sci Eng C. 2015;47:156–64.

  37. Narum SM, Le T, Le DP, Lee JC, Donahue ND, Yang W, et al. Passive targeting in nanomedicine: fundamental concepts, body interactions, and clinical potential. In: Chung EJ, Leon L, Rinaldi C, editors. Nanoparticles for Biomedical Applications. Amsterdam: Elsevier; 2019. p. 37–53. https://doi.org/10.1016/B978-0-12-816662-8.00004-7.

  38. Kukkar D, Kukkar P, Kumar V, Hong J, Kim K-H, Deep A. Recent advances in nanoscale materials for antibody-based cancer theranostics. Biosens Bioelectron. 2020;173:112787.

    Article  PubMed  CAS  Google Scholar 

  39. Hayden RE, Pratt G, Roberts C, Drayson MT, Bunce CM. Treatment of chronic lymphocytic leukemia requires targeting of the protective lymph node environment with novel therapeutic approaches. Leuk Lymphoma. 2012;53:537–49.

    Article  CAS  PubMed  Google Scholar 

  40. Houshmand M, Garello F, Circosta P, Stefania R, Aime S, Saglio G, et al. Nanocarriers as magic bullets in the treatment of leukemia. Nanomaterials. 2020;10:276.

  41. Liu R, Hu C, Yang Y, Zhang J, Gao H. Theranostic nanoparticles with tumor-specific enzyme-triggered size reduction and drug release to perform photothermal therapy for breast cancer treatment. Acta Pharm Sin B. 2019;9:410–20.

  42. Li J, Sun CK. In vitro analysis of microRNA-26a in chronic lymphocytic leukemia cells. Int J Mol Med. 2018;42:3364–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. McCallion C, Peters AD, Booth A, Rees-Unwin K, Adams J, Rahi R, et al. Dual-action CXCR4-targeting liposomes in leukemia: Function blocking and drug delivery. Blood Adv. 2019;3:2069–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. D’Abundo L, Callegari E, Bresin A, Chillemi A, Elamin BK, Guerriero P, et al. Anti-leukemic activity of microRNA-26a in a chronic lymphocytic leukemia mouse model. Oncogene. 2017;36:6617–26.

    Article  PubMed  CAS  Google Scholar 

  45. Chiang CL, Goswami S, Frissora FW, Xie Z, Yan PS, Bundschuh R, et al. ROR1-targeted delivery of miR-29b induces cell cycle arrest and therapeutic benefit in vivo in a CLL mouse model. Blood. 2019;134:432–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kon E, Hazan-Halevy I, Rosenblum D, Cohen N, Chatterjee S, Veiga N, et al. Resveratrol enhances mrna and sirna lipid nanoparticles primary CLL cell transfection. Pharmaceutics. 2020;12:1–14.

    Article  CAS  Google Scholar 

  47. Rangaraj N, Pailla SR, Shah S, Prajapati S, Sampathi S. QbD aided development of ibrutinib-loaded nanostructured lipid carriers aimed for lymphatic targeting: evaluation using chylomicron flow blocking approach. Drug Deliv Transl Res. 2020;10:1476–94.

    Article  CAS  PubMed  Google Scholar 

  48. Gothwal A, Khan I, Kumar P, Raza K, Kaul A, Mishra AK, et al. Bendamustine-PAMAM Conjugates for Improved Apoptosis, Efficacy, and in Vivo Pharmacokinetics: A Sustainable Delivery Tactic. Mol Pharm. 2018;15:2084–97.

    Article  CAS  PubMed  Google Scholar 

  49. Gorzkiewicz M, Jatczak-Pawlik I, Studzian M, Pułaski Ł, Appelhans D, Voit B, et al. Glycodendrimer Nanocarriers for Direct Delivery of Fludarabine Triphosphate to Leukemic Cells: Improved Pharmacokinetics and Pharmacodynamics of Fludarabine. Biomacromol. 2018;19:531–43.

    Article  CAS  Google Scholar 

  50. Franiak-Pietryga I, Ziemba B, Sikorska H, Jander M, Kuncman W, Danilewicz M, et al. Maltotriose-modified poly(propylene imine) Glycodendrimers as a potential novel platform in the treatment of chronic lymphocytic Leukemia. A proof-of-concept pilot study in the animal model of CLL. Toxicol Appl Pharmacol. 2020;403:115139.

    Article  CAS  PubMed  Google Scholar 

  51. Choi KY, Correa S, Min J, Li J, Roy S, Laccetti KH, et al. Binary Targeting of siRNA to Hematologic Cancer Cells In Vivo Using Layer-by-Layer Nanoparticles. Adv Funct Mater. 2019;29:1900018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Khan I, Gothwal A, Kaul A, Mathur R, Mishra AK, Gupta U. Radiolabeled PLGA Nanoparticles for Effective Targeting of Bendamustine in Tumor Bearing Mice. Pharm Res. 2018;35:1–11.

    CAS  Google Scholar 

  53. Alshetaili AS, Ansari MJ, Anwer MK, Ganaie MA, Iqbal M, Alshahrani SM, et al. Enhanced Oral Bioavailability of Ibrutinib Encapsulated Poly (Lactic-co- Glycolic Acid) Nanoparticles: Pharmacokinetic Evaluation in Rats. Curr Pharm Anal. 2019;15:661–8.

    Article  CAS  Google Scholar 

  54. Capolla S, Mezzaroba N, Zorzet S, Tripodo C, Mendoza-Maldonado R, Granzotto M, et al. A new approach for the treatment of CLL using chlorambucil/hydroxychloroquine-loaded anti-CD20 nanoparticles. Nano Res. 2016;9:537–48.

    Article  CAS  Google Scholar 

  55. Zhao L, Tang B, Tang P, Sun Q, Suo Z, Zhang M, et al. Chitosan/Sulfobutylether-β-Cyclodextrin Nanoparticles for Ibrutinib Delivery: A Potential Nanoformulation of Novel Kinase Inhibitor. J Pharm Sci. 2020;109:1136–44.

    Article  CAS  PubMed  Google Scholar 

  56. Boca S, Lucan C, Frinc I, Petrushev B, Simon T, Berce C, et al. Gold nanoparticles conjugated with rituximab for the treatment of chronic lymphocytic leukaemia. Farmacia. 2016;64:688–98.

    CAS  Google Scholar 

  57. Song S, Hao Y, Yang X, Patra P, Chen J. Using gold nanoparticles as delivery vehicles for targeted delivery of chemotherapy drug fludarabine phosphate to treat hematological cancers. J Nanosci Nanotechnol. 2016;16:2582–6.

    Article  CAS  PubMed  Google Scholar 

  58. Arib C, Spadavecchia J. Lenalidomide (LENA) Hybrid Gold Complex Nanoparticles: Synthesis, Physicochemical Evaluation, and Perspectives in Nanomedicine. ACS Omega. 2020;5:28483–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McMahon KM, Scielzo C, Angeloni NL, Deiss-Yehiely E, Scarfo L, Ranghetti P, et al. Synthetic high-density lipoproteins as targeted monotherapy for chronic lymphocytic leukemia. Oncotarget. 2017;8:11219–27.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Li Q, Yuan Q, Zhao M, Yao Y, Gao L, Liu R, et al. Au nanoclusters suppress chronic lymphocytic leukaemia cells by inhibiting thioredoxin reductase 1 to induce intracellular oxidative stress and apoptosis. Sci Bull. 2017;62:537–45.

    Article  CAS  Google Scholar 

  61. Yao Y, Lu C, Gao L, Cao K, Yuan H, Zhang X, et al. Gold Cluster Capped with a BCL-2 Antagonistic Peptide Exerts Synergistic Antitumor Activity in Chronic Lymphocytic Leukemia Cells. ACS Appl Mater Interfaces. 2021;13:21108–18.

    Article  CAS  PubMed  Google Scholar 

  62. Song L, Zhang W, Chen H, Zhang X, Wu H, Ma M, et al. Apoptosis-promoting effect of rituximab-conjugated magnetic nanoprobes on malignant lymphoma cells with CD20 overexpression. Int J Nanomedicine. 2019;14:921–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Song L, Chen Y, Ding J, Wu H, Zhang W, Ma M, et al. Rituximab conjugated iron oxide nanoparticles for targeted imaging and enhanced treatment against CD20-positive lymphoma. J Mater Chem B. 2020;8:895–907.

    Article  CAS  PubMed  Google Scholar 

  64. Kickham LC. Development of a novel CD52 functionalised nanoparticle for the targeting of Chronic Lymphocytic Leukaemia [Doctoral dissertation]. [Dublin, Irland]: University of Dublin; 2019.

  65. Zhou S, Wu D, Yin X, Jin X, Zhang X, Zheng S, et al. Intracellular pH-responsive and rituximab-conjugated mesoporous silica nanoparticles for targeted drug delivery to lymphoma B cells. J Exp Clin Cancer Res. 2017;36:1–14.

    Article  CAS  Google Scholar 

  66. Thomas SC, Madaan T, Iqbal Z, Talegaonkar S. Box-Behnken Design of Experiment Assisted Development and Optimization of Bendamustine HCl loaded Hydroxyapatite Nanoparticles. Curr Drug Deliv. 2018;15:1230–44.

    Article  CAS  PubMed  Google Scholar 

  67. Thi TTH, Suys EJA, Lee JS, Nguyen DH, Park KD, Truong NP. Lipid-Based Nanoparticles in the Clinic and Clinical Trials: From Cancer Nanomedicine to COVID-19 Vaccines. Vaccines. 2021;9:359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang C, Merlin D. Lipid-based drug delivery nanoplatforms for colorectal cancer therapy. Nanomater (Basel, Switzerland). 2020;10:1424.

    Article  CAS  Google Scholar 

  69. García-Pinel B, Porras-Alcalá C, Ortega-Rodríguez A, Sarabia F, Prados J, Melguizo C, et al. Lipid-based nanoparticles: Application and recent advances in cancer treatment. Nanomaterials. 2019;9:638.

    Article  PubMed Central  CAS  Google Scholar 

  70. Cao J, Huang D, Peppas NA. Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Adv Drug Deliv Rev. 2020;167:170–88.

  71. Eroğlu İ, İbrahim M. Liposome-ligand conjugates: a review on the current state of art. J Drug Target. 2020;28:225–44.

  72. Wang X, Song Y, Su Y, Tian Q, Li B, Quan J, et al. Are PEGylated liposomes better than conventional liposomes? A special case for vincristine. 2015;23:1092–100. https://doi.org/10.3109/1071754420151027015.

  73. Krauss AC, Gao X, Li L, Manning ML, Patel P, Fu W, et al. FDA Approval Summary: (Daunorubicin and Cytarabine) Liposome for Injection for the Treatment of Adults with High-Risk Acute Myeloid Leukemia. Clin Cancer Res. 2019;25:2685–90.

    Article  CAS  PubMed  Google Scholar 

  74. Mayer LD, Tardi P, Louie AC. CPX-351: a nanoscale liposomal co-formulation of daunorubicin and cytarabine with unique biodistribution and tumor cell uptake properties. Int J Nanomedicine. 2019;14:3819–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Tzogani K, Penttilä K, Lapveteläinen T, Hemmings R, Koenig J, Freire J, et al. EMA Review of Daunorubicin and Cytarabine Encapsulated in Liposomes (Vyxeos, CPX-351) for the Treatment of Adults with Newly Diagnosed, Therapy-Related Acute Myeloid Leukemia or Acute Myeloid Leukemia with Myelodysplasia-Related Changes. Oncologist. 2020;25:e1414–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Vu MN, Kelly HG, Wheatley AK, Peng S, Pilkington EH, Veldhuis NA, et al. Cellular Interactions of Liposomes and PISA Nanoparticles during Human Blood Flow in a Microvascular Network. Small. 2020;16:e2002861.

    Article  PubMed  CAS  Google Scholar 

  77. Nakamura T, Kawai M, Sato Y, Maeki M, Tokeshi M, Harashima H. The Effect of Size and Charge of Lipid Nanoparticles Prepared by Microfluidic Mixing on Their Lymph Node Transitivity and Distribution. Mol Pharm. 2020;17:944–53.

    Article  CAS  PubMed  Google Scholar 

  78. Xu Y, Michalowski CB, Beloqui A. Advances in lipid carriers for drug delivery to the gastrointestinal tract. Curr Opin Colloid Interface Sci. 2021;52:101414.

    Article  CAS  Google Scholar 

  79. Alavi M, Hamidi M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab Pers Ther. 2019;34:10.

    Google Scholar 

  80. Shen Z, Fisher A, Liu WK, Li Y. PEGylated “stealth” nanoparticles and liposomes. In: Parambath A, editor. Engineering of Biomaterials for Drug Delivery Systems. Cambridge: Woodhead Publishing; 2018. p. 1–26. https://doi.org/10.1016/B978-0-08-101750-0.00001-5.

  81. Abu Lila AS, Shimizu T, Ishida T. PEGylation and anti-PEG antibodies. In: Parambath A, editor. Engineering of Biomaterials for Drug Delivery Systems, Woodhead Publishing; 2018, p. 51–68.

  82. Di J, Xie F, Xu Y. When liposomes met antibodies: Drug delivery and beyond. Adv Drug Deliv Rev 2020;154–155:151–62.<br>97. Estanqueiro M, Vasconcelos H, Lobo JMS, Amaral H. Delivering miRNA modulators for cancer treatment. In: Grumezescu AM, editor. Drug Targeting and Stimuli Sensitive Drug Delivery Systems. Norwich: William Andrew Publishing; 2018. p. 517–65. https://doi.org/10.1016/B978-0-12-813689-8.00014-8.

  83. Mohamed M, Lila ASA, Shimizu T, Alaaeldin E, Hussein A, Sarhan HA, et al. PEGylated liposomes: immunological responses. Sci Technol Adv Mater. 2019;20:710–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Chena S, Zaifmana J, Kulkarnia JA, Zhigaltseva IV, Tama YK, Ciufolinic MA, et al. Dexamethasone prodrugs as potent suppressors of the immunostimulatory effects of lipid nanoparticle formulations of nucleic acids. J Control Release. 2018;286:46–54.

    Article  CAS  Google Scholar 

  85. Riaz MK, Riaz MA, Zhang X, Lin C, Wong KH, Chen X, et al. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. Int J Mol Sci. 2018;19:195.

    Article  PubMed Central  CAS  Google Scholar 

  86. Eloya JO, Petrillib R, Trevizana LNF, Chorilli M. Immunoliposomes: A review on functionalization strategies and targets for drug delivery. Colloids Surf B Biointerfaces. 2017;159:454–67.

    Article  CAS  Google Scholar 

  87. Yonezawa S, Koide H, Asai T. Recent advances in siRNA delivery mediated by lipid-based nanoparticles. Adv Drug Deliv Rev. 2020;154–155:64–78.

    Article  PubMed  CAS  Google Scholar 

  88. Sato Y, Nakamura T, Yamada Y, Harashima H. The nanomedicine rush: New strategies for unmet medical needs based on innovative nano DDS. J Control Release. 2021;330:305–16.

    Article  CAS  PubMed  Google Scholar 

  89. Hoy SM. Patisiran: First Global Approval. Drugs. 2018;78:1625–31.

    Article  CAS  PubMed  Google Scholar 

  90. Kim M, Jeong M, Hur S, Cho Y, Park J, Jung H, et al. Engineered ionizable lipid nanoparticles for targeted delivery of RNA therapeutics into different types of cells in the liver. Sci Adv. 2021;7:eabf4398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Schlich M, Palomba R, Costabile G, Mizrahy S, Pannuzzo M, Peer D, et al. Cytosolic delivery of nucleic acids: The case of ionizable lipid nanoparticles. Bioeng Transl Med. 2021;6:e10213.

    Article  CAS  PubMed Central  Google Scholar 

  92. Billingsley MM, Singh N, Ravikumar P, Zhang R, June CH, Mitchell MJ. Ionizable Lipid Nanoparticle-Mediated mRNA Delivery for Human CAR T Cell Engineering. Nano Lett. 2020;20:1578–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Abdel-Magid AF. Myeloid Cell Leukemia-1 Inhibitors as Emerging Cancer Treatment. ACS Med Chem Lett. 2021;12:334–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gutjahr JC, Greil R, Hartmann TN. The role of CD44 in the pathophysiology of chronic lymphocytic leukemia. Front Immunol. 2015;6:1–7.

    Article  CAS  Google Scholar 

  95. Shi Y, Zhang Z, Qu X, Zhu X, Zhao L, Wei R, et al. Roles of STAT3 in Leukemia (Review). Int J Oncol. 2018;53:7–20.

    CAS  PubMed  Google Scholar 

  96. Chauhan I, Yasir M, Verma M, Singh AP. Nanostructured Lipid Carriers : A Groundbreaking Approach for Transdermal Drug Delivery. Adv Pharm Bull. 2020;10:150–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Estanqueiro M, Vasconcelos H, Lobo JMS, Amaral H. Delivering miRNA modulators for cancer treatment. Drug Targeting and Stimuli Sensitive Drug Delivery Systems: Elsevier; 2018. p. 517–65.

    Google Scholar 

  98. Shekunov B. Physicochemical properties of respiratory particles and formulations. In: Hickey AJ, Mansour HM, editors. Inhalation Aerosols. Boca Raton: CRC Press; 2019. p. 3–30. https://doi.org/10.1201/9781315159768-1.

  99. De Claro RA, McGinn KM, Verdun N, Lee SL, Chiu HJ, Saber H, et al. FDA approval: Ibrutinib for patients with previously treated mantle cell lymphoma and previously treated chronic lymphocytic leukemia. Clin Cancer Res. 2015;21:3586–90.

    Article  PubMed  CAS  Google Scholar 

  100. Lee CS, Rattu MA, Kim SS. A review of a novel, Bruton’s tyrosine kinase inhibitor, ibrutinib. J Oncol Pharm Pract. 2016;22:92–104.

  101. Shi X, Song S, Ding Z, Fan B, Huang W, Xu T. Improving the Solubility, Dissolution, and Bioavailability of Ibrutinib by Preparing It in a Coamorphous State With Saccharin. J Pharm Sci. 2019;108:3020–8.

    Article  CAS  PubMed  Google Scholar 

  102. Qiu Q, Lu M, Li C, Luo X, Liu X, Hu L, et al. Novel Self-Assembled Ibrutinib-Phospholipid Complex for Potently Peroral Delivery of Poorly Soluble Drugs with pH-Dependent Solubility. AAPS PharmSciTech. 2018;19:3571–83.

    Article  CAS  PubMed  Google Scholar 

  103. Lombardo D, Kiselev MA, Caccamo MT. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater. 2019;2019. https://doi.org/10.1155/2019/3702518.

  104. Zoulikha M, Xiao Q, Boafo GF, Sallam MA, Chen Z, He W. Pulmonary delivery of siRNA against acute lung injury/acute respiratory distress syndrome. Acta Pharm Sin B. 2022;12:600–20.

  105. Delyanee M, Akbari S, Solouk A. Amine-terminated dendritic polymers as promising nanoplatform for diagnostic and therapeutic agents ’ modi fi cation : A review. Eur J Med Chem. 2021;221:113572.

    Article  CAS  PubMed  Google Scholar 

  106. Nikzamir M, Hanifehpour Y, Akbarzadeh A, Panahi Y. Applications of Dendrimers in Nanomedicine and Drug Delivery : A Review. J Inorg Organomet Polym Mater. 2021;31:2246–61.

    Article  CAS  Google Scholar 

  107. Kesharwani P, Jain K, Jain NK. Progress in Polymer Science Dendrimer as nanocarrier for drug delivery. Prog Polym Sci. 2014;39:268–307.

    Article  CAS  Google Scholar 

  108. Janaszewska A, Lazniewska J, Trzepinski P, Marcinkowska M, Klajnert-Maculewicz B. Cytotoxicity of dendrimers. Biomolecules. 2019;9:330.

  109. Surekha B, Kommana NS, Dubey SK, Kumar AVP, Shukla R, Kesharwani P. PAMAM dendrimer as a talented multifunctional biomimetic nanocarrier for cancer diagnosis and therapy. Colloids Surfaces B Biointerfaces. 2021;204:111837.

    Article  CAS  PubMed  Google Scholar 

  110. Abedi-Gaballu F, Dehghan G, Ghaffari M, Yekta R, Abbaspour-Ravasjanid S, Baradarana B, et al. PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl Mater Today. 2018;12:177–90.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Dunn A, Shi D. Polymeric Vectors for Strategic Delivery of Nucleic Acids. Nano Life. 2017;07:1730003.

    Article  CAS  Google Scholar 

  112. Patel V, Rajani C, Paul D, Borisa P, Rajpoot K, Youngren-Ortiz SR, et al. Dendrimers as novel drug-delivery system and its applications. In: Tekade RK, editor. Drug Delivery Systems. London: Academic Press; 2020. p. 333–92. https://doi.org/10.1016/B978-0-12-814487-9.00008-9.

  113. Franiak-Pietryga I, Maciejewski H, Ostrowska K, Appelhans D, Voit B, Misiewicz M, et al. Dendrimer-based nanoparticles for potential personalized therapy in chronic lymphocytic leukemia: Targeting the BCR-signaling pathway. Int J Biol Macromol. 2016;88:156–61.

    Article  CAS  PubMed  Google Scholar 

  114. Szulc A, Pulaski L, Appelhans D, Voit B, Klajnert-Maculewicz B. Sugar-modified poly(propylene imine) dendrimers as drug delivery agents for cytarabine to overcome drug resistance. Int J Pharm. 2016;513:572–83.

    Article  CAS  PubMed  Google Scholar 

  115. Adekola KUA, Dalva Aydemir S, Ma S, Zhou Z, Rosen ST, Shanmugam M. Investigating and targeting chronic lymphocytic leukemia metabolism with the human immunodeficiency virus protease inhibitor ritonavir and metformin. Leuk Lymphoma. 2015;56:450–9.

    Article  CAS  PubMed  Google Scholar 

  116. Sakamaki Y, Ozdemir J, Diaz Perez A, Heidrick Z, Watson O, Tsuji M, et al. Maltotriose Conjugated Metal-Organic Frameworks for Selective Targeting and Photodynamic Therapy of Triple Negative Breast Cancer Cells and Tumor Associated Macrophages. Adv Ther. 2020;3:2000029.

    Article  CAS  Google Scholar 

  117. Gorzkiewicz M, Deriu MA, Studzian M, Janaszewska A, Grasso G, Pułaski Ł, et al. Fludarabine-Specific Molecular Interactions with Maltose-Modified Poly(propyleneimine) Dendrimer Enable Effective Cell Entry of the Active Drug Form: Comparison with Clofarabine. Biomacromol. 2019;20:1429–42.

    Article  CAS  Google Scholar 

  118. Puy JY, Jordheim LP, Cros-Perrial E, Dumontet C, Peyrottes S, Lefebvre-Tournier I. Determination and quantification of intracellular fludarabine triphosphate, cladribine triphosphate and clofarabine triphosphate by LC–MS/MS in human cancer cells. J Chromatogr B Anal Technol Biomed Life Sci. 2017;1053:101–10.

    Article  CAS  Google Scholar 

  119. Galmarini CM, Mackey JR, Dumontet C. Nucleoside analogues: Mechanisms of drug resistance and reversal strategies. Leukemia. 2001;15:875–90.

  120. Franiak-Pietryga I, Ostrowska K, Maciejewski H, Appelhans D, Misiewicz M, Ziemba B, et al. PPI-G4 Glycodendrimers Upregulate TRAIL-Induced Apoptosis in Chronic Lymphocytic Leukemia Cells. Macromol Biosci. 2017;17:1600169.

    Article  CAS  Google Scholar 

  121. Franiak-Pietryga I, Maciejewski H, Ziemba B, Appelhans D, Voit B, Robak T, et al. Blockage of Wnt/β-Catenin Signaling by Nanoparticles Reduces Survival and Proliferation of CLL Cells In Vitro-Preliminary Study. Macromol Biosci. 2017;17:1700130.

    Article  CAS  Google Scholar 

  122. Franiak-pietryga I, Ziemba B, Sikorska H, Jander M, Appelhans D, Bryszewska M, et al. Neurotoxicity of poly(propylene imine) glycodendrimers. Drug Chem Toxicol 2020:1–9. https://doi.org/10.1080/01480545.2020.1843472.

  123. Idrees H, Zohaib S, Zaidi J, Sabir A, Khan RU, Zhang X, et al. A Review of Biodegradable Natural Polymer-Based Nanoparticles for Drug Delivery Applications. Nanomaterials. 2020;10:1970.

    Article  CAS  PubMed Central  Google Scholar 

  124. Yadav HK, Almokdad AA, Shaluf SI, Debe MS. Polymer-based nanomaterials for drug delivery carriers. In: Mohapatra SS, Ranjan S, Dasgupta N, Mishra RK, Thomas S, editors. Nanocarriers for Drug Delivery. Amsterdam: Elsevier; 2019. p. 531–56. https://doi.org/10.1016/B978-0-12-814033-8.00017-5.

  125. Bhatt P, Trehan S, Inamdar N, Mourya VK, Misra A. Polymers in drug delivery: An update. In: Misra A, Shahiwala A, editors. Applications of Polymers in Drug Delivery. Amsterdam: Elsevier; 2021. p. 1–42. https://doi.org/10.1016/B978-0-12-819659-5.00001-X.

  126. Piotrowski-Daspit AS, Kauffman AC, Bracaglia LG, Saltzman WM. Polymeric vehicles for nucleic acid delivery. Adv Drug Deliv Rev. 2020;156:119–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kargaard A, Sluijter JPG, Klumperman B. Polymeric siRNA gene delivery – transfection efficiency versus cytotoxicity. J Control Release. 2019;316:263–91.

    Article  CAS  PubMed  Google Scholar 

  128. Yen J, Ying H, Wang H, Yin L, Uckun F, Cheng J. CD44 Mediated Nonviral Gene Delivery into Human Embryonic Stem Cells via Hyaluronic-Acid-Coated Nanoparticles. ACS Biomater Sci Eng. 2016;2:326–35.

    Article  CAS  PubMed  Google Scholar 

  129. Pan C, Zhang T, Li S, Xu Z, Pan B, Xu S, et al. Hybrid nanoparticles modified by hyaluronic acid loading an hsp90 inhibitor as a novel delivery system for subcutaneous and orthotopic colon cancer therapy. Int J Nanomedicine. 2021;16:1743–55.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Pavlasova G, Mraz M. The regulation and function of CD20: An “enigma” of B-cell biology and targeted therapy. Haematologica. 2020;105:1494–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Tyler B, Gullotti D, Mangraviti A, Utsuki T, Brem H. Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Adv Drug Deliv Rev. 2016;107:163–75.

    Article  CAS  PubMed  Google Scholar 

  132. Da SJ, Jesus S, Bernardi N, Colaço M, Borges O. Poly(D, L-Lactic Acid) Nanoparticle Size Reduction Increases Its Immunotoxicity. Front Bioeng Biotechnol. 2019;7:137.

    Article  Google Scholar 

  133. Łukasiewicz S, Mikołajczyk A, Błasiak E, Fic E, Dziedzicka-Wasylewska M. Polycaprolactone Nanoparticles as Promising Candidates for Nanocarriers in Novel Nanomedicines. Pharmaceutics. 2021;13:191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Witt S, Scheper T, Walter J-G. Production of polycaprolactone nanoparticles with hydrodynamic diameters below 100 nm. Eng Life Sci. 2019;19:658–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Casalini T, Rossi F, Castrovinci A, Perale G. A Perspective on Polylactic Acid-Based Polymers Use for Nanoparticles Synthesis and Applications. Front Bioeng Biotechnol. 2019;7:259.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. Adv Drug Deliv Rev. 2016;107:367–92.

    Article  CAS  PubMed  Google Scholar 

  137. Astuti SH, Rahma WA, Budianto E. Biodegradable Microcapsules from D, L-PLA/PCL as Controlled Nifedipine Drug Delivery Carrier. Macromol Symp. 2020;391:1900132.

    Article  CAS  Google Scholar 

  138. Ostafinska A, Fortelny I, Nevoralova M, Hodan J, Kredatusova J, Slouf M. Synergistic effects in mechanical properties of PLA/PCL blends with optimized composition, processing, and morphology. RSC Adv. 2015;5:98971–82.

    Article  CAS  Google Scholar 

  139. Behl A, Parmar VS, Malhotra S, Chhillar AK. Biodegradable diblock copolymeric PEG-PCL nanoparticles : Synthesis, characterization and applications as anticancer drug delivery agents. Polymer (Guildf). 2020;207:122901.

    Article  CAS  Google Scholar 

  140. Garg U, Chauhan S, Nagaich U, Jain N. Current Advances in Chitosan Nanoparticles Based Drug Delivery and Targeting. 2019;9:195–204.

    CAS  Google Scholar 

  141. Yuan Z, Ye Y, Gao F, Yuan H, Lan M, Lou K, et al. Chitosan-graft-B-cyclodextrin nanoparticles as a carrier for controlled drug release. Int J Pharm. 2013;446:191–8.

    Article  CAS  PubMed  Google Scholar 

  142. Mahmoud AA, El-Feky GS, Kamel R, Awad GE. Chitosan/sulfobutylether-β-cyclodextrin nanoparticles as a potential approach for ocular drug delivery. Int J Pharm. 2011;413:229–36.

    Article  CAS  PubMed  Google Scholar 

  143. Yanat M, Schroën K. Preparation methods and applications of chitosan nanoparticles; with an outlook toward reinforcement of biodegradable packaging. React Funct Polym. 2021;161:104849.

    Article  CAS  Google Scholar 

  144. Gidwani B, Vyas AA. Comprehensive Review on Cyclodextrin-Based Carriers for Delivery of Chemotherapeutic Cytotoxic Anticancer Drugs. Biomed Res Int. 2015;2015:198268.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Huang H, Feng W, Chen Y, Shi J. Inorganic nanoparticles in clinical trials and translations. Nano Today. 2020;35:100972.

    Article  CAS  Google Scholar 

  146. Bayda S, Hadla M, Palazzolo S, Riello P, Corona G, Toffoli G, et al. Inorganic Nanoparticles for Cancer Therapy: A Transition from Lab to Clinic. Curr Med Chem. 2018;25:4269–303.

  147. Montaseri H, Kruger CA, Abrahamse H. Inorganic Nanoparticles Applied for Active Targeted Photodynamic Therapy of Breast Cancer. Pharmaceutics. 2021;13:296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wang C, Zhang W, He Y, Gao Z, Liu L, Yu S, et al. Anti-leukaemia therapeutic effects. Nat Nanotechnol. 2021;16:1413–23.

    Article  PubMed  CAS  Google Scholar 

  149. Kumana CR, Mak R, Kwong YL, Gill H. Resurrection of Oral Arsenic Trioxide for Treating Acute Promyelocytic Leukaemia: A Historical Account From Bedside to Bench to Bedside. Front Oncol. 2020;10:1294.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Gurnari C, De Bellis E, DIvona M, Ottone T, Lavorgna S, Voso MT. When Poisons Cure: The Case of Arsenic in Acute Promyelocytic Leukemia. Chemotherapy. 2019;64:238–47.

    Article  CAS  PubMed  Google Scholar 

  151. Kong F-Y, Zhang J-W, Li R-F, Wang Z-X, Wang W-J, Wang W. Unique Roles of Gold Nanoparticles in Drug Delivery. Targeting and Imaging Applications Molecules. 2017;22:1445.

    Google Scholar 

  152. Elahi N, Kamali M, Baghersad MH. Recent biomedical applications of gold nanoparticles: A review. Talanta. 2018;184:537–56.

    Article  CAS  PubMed  Google Scholar 

  153. Yue S, Luo M, Liu H, Wei S. Recent Advances of Gold Compounds in Anticancer Immunity. Front Chem. 2020;8:543.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Rothan HA, Stone S, Natekar J, Kumari P, Arora K, Kumar M. The FDA- approved gold drug Auranofin inhibits novel coronavirus (SARS-COV-2) replication and attenuates inflammation in human cells. Virology. 2020;547:7–11.

    Article  CAS  PubMed  Google Scholar 

  155. Boullosa LF, Van Loenhout J, Flieswasser T, De Waele J, Hermans C, Lambrechts H, et al. Auranofin reveals therapeutic anticancer potential by triggering distinct molecular cell death mechanisms and innate immunity in mutant p53 non-small cell lung cancer. Redox Biol. 2021;42:101949.

    Article  CAS  Google Scholar 

  156. Onodera T, Momose I, Kawada M. Potential Anticancer Activity of Auranofin. Chem Pharm Bull. 2019;67:186–91.

    Article  CAS  Google Scholar 

  157. Fiskus W, Saba N, Shen M, Ghias M, Liu J, Das Gupta S, et al. Auranofin induces lethal oxidative and endoplasmic reticulum stress and exerts potent preclinical activity against chronic lymphocytic leukemia. Cancer Res 2014;74:2520–32.

  158. Itchaki G, Brown JR. Lenalidomide in the treatment of chronic lymphocytic leukemia. Expert Opin Investig Drugs. 2017;26:633–50.

    Article  CAS  PubMed  Google Scholar 

  159. Yuan J, Hou K, Yao Y, Du Z, Lu C, Yuan Q, et al. Gold Clusters Attenuate Inflammation in Rat Mesangial Cells via Inhibiting the Activation of NF-κB Pathway. Nanomaterials. 2020;10:712.

    Article  CAS  PubMed Central  Google Scholar 

  160. Geppert M, Himly M. Iron Oxide Nanoparticles in Bioimaging – An Immune Perspective. Front Immunol. 2021;12:688927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Vangijzegem T, Stanicki D, Laurent S. Magnetic iron oxide nanoparticles for drug delivery: applications and characteristics. Expert Opin Drug Deliv. 2019;16:69–78.

    Article  CAS  PubMed  Google Scholar 

  162. Su S, Kang PM. Recent Advances in Nanocarrier-Assisted Therapeutics Delivery Systems. Pharmaceutics. 2020;12:837.

    Article  CAS  PubMed Central  Google Scholar 

  163. Rueda-Gensini L, Cifuentes J, Castellanos MC, Puentes PR, Serna JA, Muñoz-Camargo C, et al. Tailoring iron oxide nanoparticles for efficient cellular internalization and endosomal escape. Nanomaterials. 2020;10:1–56.

    Article  CAS  Google Scholar 

  164. Luther DC, Huang R, Jeon T, Zhang X, Lee Y-W, Nagaraj H, et al. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Adv Drug Deliv Rev. 2020;156:188–213.

  165. Chee CF, Leo BF, Lai CW. Superparamagnetic iron oxide nanoparticles for drug delivery. In: Inamuddin, Asiri AM, Mohammad A, editors. Applications of Nanocomposite Materials in Drug Delivery. Cambridge: Woodhead Publishing; 2018. p. 861–903. https://doi.org/10.1016/B978-0-12-813741-3.00038-8.

  166. Lorkowski ME, Atukorale PU, Ghaghada KB, Karathanasis E. Stimuli-Responsive Iron Oxide Nanotheranostics : A Versatile and Powerful Approach for Cancer Therapy. Adv Heal Mater. 2021;10:e2001044.

    Article  CAS  Google Scholar 

  167. Wang F, Lv H, Zhao B, Zhou L, Wang S, Luo J, et al. Iron and leukemia: new insights for future treatments. J Exp Clin Cancer Res. 2019;38:406.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Yang R, Li Y, Wang X, Yan J, Pan D, Xu Y, et al. Doxorubicin loaded ferritin nanoparticles for ferroptosis enhanced targeted killing of cancer cells. RSC Adv. 2019;9:28548–53.

    Article  Google Scholar 

  169. Luo T, Gao J, Lin N, Wang J. Effects of Two Kinds of Iron Nanoparticles as Reactive Oxygen Species Inducer and Scavenger on the Transcriptomic Profiles of Two Human Leukemia Cells with Different Stemness. Nanomaterials. 2020;10:1951.

    Article  CAS  PubMed Central  Google Scholar 

  170. Trujillo-Alonso V, Pratt EC, Zong H, Lara-Martinez A, Kaittanis C, Rabie MO, et al. FDA-approved ferumoxytol displays anti-leukaemia efficacy against cells with low ferroportin levels. Nat Nanotechnol. 2019;14:616–22.

  171. Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F, et al. Iron Oxide Nanoparticles : Diagnostic, Therapeutic and Theranostic Applications. Adv Drug Deliv Rev. 2019;138:302–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Lim CK, Sun L, Feng Q, Law P, Chua WT, Lim SN, et al. Effect of anti-CD52 antibody alemtuzumab on ex-vivo culture of umbilical cord blood stem cells. J Hematol Oncol. 2008;1:19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Demko S, Summers J, Keegan P, Pazdur R. FDA Drug Approval Summary: Alemtuzumab as Single-Agent Treatment for B-Cell Chronic Lymphocytic Leukemia. Oncologist. 2008;13:167–74.

    Article  CAS  PubMed  Google Scholar 

  174. Eichhorst B, Al-Sawaf O, Hallek M. Initial Therapy of  Chronic Lymphocytic Leukemia. In: Hallek M, Eichhorst B, Catovsky D, editors. Chronic Lymphocytic Leukemia.Cham: Springer; 2019. p. 79–96. https://doi.org/10.1007/978-3-030-11392-6_6.

  175. Vallet-Regí M, Colilla M, Izquierdo-Barba I, Manzano M. Mesoporous silica nanoparticles for drug delivery: Current insights. Molecules. 2018;23:47.

    Article  CAS  Google Scholar 

  176. Manzano M, Vallet-Regí M. Mesoporous Silica Nanoparticles for Drug Delivery. Adv Funct Mater. 2020;30:1902634.

    Article  CAS  Google Scholar 

  177. Hakeem A, Duan R, Zahid F, Dong C, Wang B, Hong F, et al. Dual stimuli-responsive nano-vehicles for controlled drug delivery: Mesoporous silica nanoparticles end-capped with natural chitosan. Chem Commun. 2014;50:13268–71.

    Article  CAS  Google Scholar 

  178. Khalifehzadeh R, Arami H. Biodegradable Calcium Phosphate Nanoparticles for Cancer Therapy. Adv Colloid Interface Sci. 2020;279:102157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Piao Y, Bei HP, Tam A, Yang Y, Zhang Q, Yang M, et al. Calcium phosphatenanoparticle based systems for therapeutic delivery. In: Cui W, Zhao X, editors. Theranostic Bionanomaterials. Amsterdam: Elsevier; 2019. p. 147–64. https://doi.org/10.1016/B978-0-12-815341-3.00006-7.

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

This study was supported by the National Natural Science Foundation of China (Nos. 81872823, and 82073782), the Shanghai Science and Technology Committee (No. 19430741500), the Key Laboratory of Modern Chinese Medicine Preparation of Ministry of Education of Jiangxi University of Traditional Chinese Medicine (zdsys-202103, China). The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei He.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zoulikha, M., He, W. Targeted Drug Delivery for Chronic Lymphocytic Leukemia. Pharm Res 39, 441–461 (2022). https://doi.org/10.1007/s11095-022-03214-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-022-03214-0

KEY WORDS

Navigation