Skip to main content

Advertisement

Log in

Applications of Dendrimers in Nanomedicine and Drug Delivery: A Review

  • Topical Reviews
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Dendrimers are hyper-branched organic compounds characterized via a three-dimensional structure possessing functional groups on the surface. These terminals groups can be simply modified to enhance the functionality of dendrimers and produce biocompatible and versatile products. They are a promising agent for nanomedicine applications because of their unique properties, including nanoscale size, globular shape, and high reactivity, solubility in water, internal cavities, and comfortable synthesis methods. The use of dendrimers as drug delivery systems have received great attention from researchers. Dendrimers can be applied as carriers for different therapeutic agents. They can reduce the toxicity of drugs and increase their efficacy. This review provides a general outline of the structure and types of dendrimers, the synthesis of dendrimers, and applications in the nanomedicine field with emphasis on drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Hereby we state that data sharing is not applicable in our submission.

References

  1. C.L. Ventola, Progress in nanomedicine: approved and investigational nanodrugs. Pharm. Ther. 42(12), 742 (2017)

    Google Scholar 

  2. A.K. Rai et al., Dendrimers: a potential carrier for targeted drug delivery system. Pharm. Biol. Eval. 3(3), 275–287 (2016)

    Google Scholar 

  3. A.M. Reddy, P.S. Babu, Dendrimers in antimicrobial therapy—an overview. Res. J. Pharm. Technol. 9(3), 322–332 (2016)

    Google Scholar 

  4. M. Stevanović, Biomedical applications of nanostructured polymeric materials, in Nanostructured Polymer Composites for Biomedical Applications. (Elsevier, Amsterdam, 2019), pp. 1–19

    Google Scholar 

  5. M.J. Dunlop et al., Nanocomposites derived from molybdenum disulfide and an organoiron dendrimer. J. Inorg. Organomet. Polym Mater. 27(1), 84–89 (2017)

    CAS  Google Scholar 

  6. K. Rajavelu, P. Rajakumar, Synthesis and DSSC application of donor-acceptor stilbenoid dendrimers with triphenylamine as core and benzothiazole as surface unit. Org. Electron. 56, 192–200 (2018)

    CAS  Google Scholar 

  7. R. Bissessur et al., Nanocomposites based on dendrimers and layered molybdenum disulfide. J. Inorg. Organomet. Polym Mater. 30, 4771–4782 (2020)

    CAS  Google Scholar 

  8. M. Dabrzalska et al., Phosphorus dendrimers and photodynamic therapy. Spectroscopic studies on two dendrimer-photosensitizer complexes: cationic phosphorus dendrimer with rose Bengal and anionic phosphorus dendrimer with methylene blue. Int. J. Pharm. 492(1–2), 266–274 (2015)

    CAS  PubMed  Google Scholar 

  9. D.R.D. Carmo, L.L. Paim, Investigation about the copper adsorption on the chloropropylsilica gel surface modified with a nanostructured dendrimer DAB-Am-16: an analytical application for determination of copper in different samples. Mater. Res. 16(1), 164–172 (2013)

    Google Scholar 

  10. M.A. Mintzer, M.W. Grinstaff, Biomedical applications of dendrimers: a tutorial. Chem. Soc. Rev. 40(1), 173–190 (2011)

    CAS  PubMed  Google Scholar 

  11. A.A. Joraid et al., Thermal degradation behavior of a new family of organometallic dendrimer. J. Inorg. Organomet. Polym. Mater. (2020). https://doi.org/10.1007/s10904-020-01444-6

    Article  Google Scholar 

  12. E. Buhleier, " Cascade"-and" nonskid-chain-like" syntheses of molecular cavity topologies. Synthesis 1978(2): 155–158 (1978)

  13. R. Denkewalter, J. Kolc, W. Lukasavage. US Pat. 4289872, 1981. in Chem. Abstr. (1985)

  14. D.A. Tomalia et al., A new class of polymers: starburst-dendritic macromolecules. Polym. J. 17(1), 117–132 (1985)

    CAS  Google Scholar 

  15. G.R. Newkome et al., Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. J. Org. Chem. 50(11), 2003–2004 (1985)

    CAS  Google Scholar 

  16. C.J. Hawker, J.M. Frechet, Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc. 112(21), 7638–7647 (1990)

    CAS  Google Scholar 

  17. B. Noriega-Luna et al., Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J. Nanomater. 2014, 1–19 (2014)

    Google Scholar 

  18. K. Albrecht, Y. Kasai, K. Yamamoto, The fluorescence and electroluminescence properties of the carbazole–phenylazomethine double layer-type dendrimer. J. Inorg. Organomet. Polym Mater. 19(1), 118–123 (2009)

    CAS  Google Scholar 

  19. R.W. Scott, O.M. Wilson, R.M. Crooks, Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. J. Phys. Chem. B. 109(2), 692–704 (2005)

  20. B. Klajnert, M. Bryszewska, The interaction of tryptophan and ANS with PAMAM dendrimers. Cell. Mol. Biol. Lett. 7(4), 1087–1094 (2002)

    CAS  PubMed  Google Scholar 

  21. M. Nasr, E. Elmowafy, M.E. Soliman, The evolution of dendrimers to composite dendrimers: a review of the state of the art, in Nanoparticles in Pharmacotherapy. (Elsevier, Amsterdam, 2019), pp. 217–249

    Google Scholar 

  22. H. Chaudhari et al., Dendrimers: novel carriers for drug delivery. J. Appl. Pharm. Res. 4(1), 01–19 (2016)

    Google Scholar 

  23. C. Loo et al., Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5(4), 709–711 (2005)

    CAS  PubMed  Google Scholar 

  24. X.-Y. Zhang, P.-Y. Zhang, Nanotechnology for multimodality treatment of cancer. Oncol. Lett. 12(6), 4883–4886 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  25. A.P. Dias et al., Dendrimers in the context of nanomedicine. Int. J. Pharm. 573, 118814 (2020)

    CAS  PubMed  Google Scholar 

  26. D. Li, S. Wen, X. Shi, Dendrimer-entrapped metal colloids as imaging agents. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 7(5), 678–690 (2015)

    CAS  PubMed  Google Scholar 

  27. R. Akki, et al., A novel approach in drug delivery system using dendrimers. Pharma. Innovation J. 8(5), 166–174 (2019)

  28. B. Yavuz et al., In vitro/in vivo evaluation of dexamethasone—PAMAM dendrimer complexes for retinal drug delivery. J. Pharm. Sci. 104(11), 3814–3823 (2015)

    CAS  PubMed  Google Scholar 

  29. D. Patton et al., Preclinical safety and efficacy assessments of dendrimer-based (SPL7013) microbicide gel formulations in a nonhuman primate model. Antimicrob. Agents Chemother. 50(5), 1696–1700 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. A.P. Sherje et al., Dendrimers: a versatile nanocarrier for drug delivery and targeting. Int. J. Pharm. 548(1), 707–720 (2018)

    CAS  PubMed  Google Scholar 

  31. S.K. Prajapati et al., Dendrimers in drug delivery, diagnosis and therapy: basics and potential applications. J. Drug Deliv. Ther. 6(1), 67–92 (2016)

    Google Scholar 

  32. R. Esfand, D.A. Tomalia, Poly(amidoamine)(PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov. Today 6(8), 427–436 (2001)

    CAS  PubMed  Google Scholar 

  33. S.K. Parajapati et al., Potential application of dendrimers in drug delivery: a concise review and update. J. Drug Deliv. Ther. 6(2), 71–88 (2016)

    CAS  Google Scholar 

  34. R. Yang et al., Synthesis of a novel polyamidoamine dendrimer conjugating with alkali blue as a lymphatic tracer and study on the lymphatic targeting in vivo. Drug Deliv. 23(7), 2298–2308 (2016)

    CAS  PubMed  Google Scholar 

  35. F. Abedi-Gaballu et al., PAMAM dendrimers as efficient drug and gene delivery nanosystems for cancer therapy. Appl. Mater. Today 12, 177–190 (2018)

    PubMed  PubMed Central  Google Scholar 

  36. A.O. Idris, Development of Electrochemical Biosensors Based on Carbon Nanoparticles-Dendrimer Derivatives for Carcinoembryonic Antigen and Alpha-Feto Protein Cancer Biomarkers (University of Johannesburg, Johannesburg, 2019).

    Google Scholar 

  37. L. Liang, J. Ruiz, D. Astruc, “Click” synthesis of a heterobifunctional ferrocenyl dendrimer with molecular recognition properties and influence of the ferrocenyl redox potential on the formation of gold nanoparticles. J. Inorg. Organomet. Polym Mater. 20(3), 503–510 (2010)

    CAS  Google Scholar 

  38. E. Esmaeili et al., Dendrimer functionalized magnetic nanoparticles as a promising platform for localized hyperthermia and magnetic resonance imaging diagnosis. J. Cell. Physiol. 234(8), 12615–12624 (2019)

    CAS  PubMed  Google Scholar 

  39. S. Wongin et al., Maintenance of human chondrogenic phenotype on a dendrimer-immobilized surface for an application of cell sheet engineering. BMC Biotechnol. 18(1), 1–11 (2018)

    Google Scholar 

  40. H. Ahmadi, M. Abdollahi, Synthesis and structural characterization of lignin/silica hybrid nanoparticles functionalized with sulfonic acid-terminated polyamidoamine. Wood Sci. Technol. 54(1), 249–268 (2020)

    CAS  Google Scholar 

  41. M. Kalomiraki, K. Thermos, N.A. Chaniotakis, Dendrimers as tunable vectors of drug delivery systems and biomedical and ocular applications. Int. J. Nanomed. 11, 1 (2016)

    CAS  Google Scholar 

  42. D.K. Hawamdeh, K. Qamhieh, A. Sayyed-Ahmad, Complexation of DNA with nano-cationic dendrimers as nonviral vectors in gene therapy. Technical Report. https://doi.org/10.13140/RG.2.2.30392.44803

  43. H.J. Hsu et al., Dendrimer-based nanocarriers: a versatile platform for drug delivery. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 9(1), e1409 (2017)

    Google Scholar 

  44. V. Mishra et al., Dendrimer based nanoarchitectures in diabetes management: an overview. Curr. Pharm. Des. 25(23), 2569–2583 (2019)

    CAS  PubMed  Google Scholar 

  45. L. Salvi et al., A synthesis, properties and application as a possible drug delivery systems dendrimers—a review. Asian J. Pharm. Res. Dev. 8(2), 107–113 (2020)

    CAS  Google Scholar 

  46. V.P. Chavda, Nanobased nano drug delivery: a comprehensive review, in Applications of Targeted Nano Drugs and Delivery Systems. (Elsevier, Amsterdam, 2019), pp. 69–92

    Google Scholar 

  47. T. Baig et al., A review about dendrimers: synthesis, types, characterization and applications. Int. J. Adv. Pharm. Biol. Chem 4, 44–59 (2015)

    CAS  Google Scholar 

  48. A.S. Ertürk, G. Elmacı, PAMAM dendrimer functionalized manganese ferrite magnetic nanoparticles: microwave-assisted synthesis and characterization. J. Inorg. Organomet. Polym Mater. 28(5), 2100–2107 (2018)

    Google Scholar 

  49. E. Abbasi et al., Dendrimers: synthesis, applications, and properties. Nanoscale Res. Lett. 9(1), 247 (2014)

    PubMed  PubMed Central  Google Scholar 

  50. A. Gothwal et al., Toxicity and biocompatibility aspects of dendrimers, in Pharmaceutical Applications of Dendrimers. (Elsevier, Amsterdam, 2020), pp. 251–274

    Google Scholar 

  51. C.J. Hawker, K.L. Wooley, J.M. Fréchet, Unimolecular micelles and globular amphiphiles: dendritic macromolecules as novel recyclable solubilization agents. J. Chem. Soc. Perkin Trans. 1 12, 1287–1297 (1993)

    Google Scholar 

  52. U. Gupta, O. Perumal, Dendrimers and its biomedical applications, in Natural and Synthetic Biomedical Polymers. (Elsevier, Amsterdam, 2014), pp. 243–257

    Google Scholar 

  53. X. Xu et al., Cooperative hierarchical self-assembly of peptide dendrimers and linear polypeptides into nanoarchitectures mimicking viral capsids. Angew. Chem. 124(13), 3184–3187 (2012)

    Google Scholar 

  54. K. Sadler, J.P. Tam, Peptide dendrimers: applications and synthesis. Rev. Mol. Biotechnol. 90(3–4), 195–229 (2002)

    CAS  Google Scholar 

  55. P. Niederhafner, J. Šebestík, J. Ježek, Peptide dendrimers. J. Pept. Sci. 11(12), 757–788 (2005)

    CAS  PubMed  Google Scholar 

  56. P. Kesharwani et al., Dendrimers in targeting and delivery of drugs, in Nanotechnology-Based Approaches for Targeting and Delivery of Drugs and Genes. (Elsevier, Amsterdam, 2017), pp. 363–388

    Google Scholar 

  57. A. Pushechnikov, S.S. Jalisatgi, M.F. Hawthorne, Dendritic closomers: novel spherical hybrid dendrimers. Chem. Commun. 49(34), 3579–3581 (2013)

    CAS  Google Scholar 

  58. K. Jain et al., Dendrimer toxicity: let’s meet the challenge. Int. J. Pharm. 394(1–2), 122–142 (2010)

    CAS  PubMed  Google Scholar 

  59. P. Antoni et al., Bifunctional dendrimers: from robust synthesis and accelerated one-pot postfunctionalization strategy to potential applications. Angew. Chem. 121(12), 2160–2164 (2009)

    Google Scholar 

  60. S.M. Grayson, J.M. Frechet, Convergent dendrons and dendrimers: from synthesis to applications. Chem. Rev. 101(12), 3819–3868 (2001)

    CAS  PubMed  Google Scholar 

  61. D.A. Tomalia, J.M. Fréchet, Discovery of dendrimers and dendritic polymers: a brief historical perspective. J. Polym. Sci. A 40(16), 2719–2728 (2002)

    CAS  Google Scholar 

  62. A.-M. Caminade et al., Synthetic pathways towards phosphorus dendrimers and dendritic architectures. Curr. Org. Chem. 10(18), 2333–2355 (2006)

    CAS  Google Scholar 

  63. T. Kawaguchi et al., Double exponential dendrimer growth. J. Am. Chem. Soc. 117(8), 2159–2165 (1995)

    CAS  Google Scholar 

  64. M. Arseneault, C. Wafer, J.-F. Morin, Recent advances in click chemistry applied to dendrimer synthesis. Molecules 20(5), 9263–9294 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Z. Iqbal et al., The edge versions of degree-based topological descriptors of dendrimers. J. Cluster Sci. 31(2), 445–452 (2020)

    CAS  Google Scholar 

  66. I. Gheorghe, C. Curutiu, L.-M. Ditu, Therapeutic nanostructures: novel approaches, in Materials for Biomedical Engineering. (Elsevier, Amsterdam, 2019), pp. 1–22

    Google Scholar 

  67. S. ho Hng, Y. Choi, Mesoporous silica-based nanoplatforms for the delivery of photodynamic therapy agents. J. Pharm. Invest. 48(1), 3–17 (2018)

    Google Scholar 

  68. P.K. Pandey et al., Nanogold-core multifunctional dendrimer for pulsatile chemo-, photothermal-and photodynamic-therapy of rheumatoid arthritis. J. Colloid Interface Sci. 544, 61–77 (2019)

    CAS  PubMed  Google Scholar 

  69. S. Battah et al., Enhanced porphyrin accumulation using dendritic derivatives of 5-aminolaevulinic acid for photodynamic therapy: an in vitro study. Int. J. Biochem. Cell Biol. 38(8), 1382–1392 (2006)

    CAS  PubMed  Google Scholar 

  70. K.-F. Xu et al., Cholesterol-modified dendrimers for constructing a tumor microenvironment-responsive drug delivery system. ACS Biomater. Sci. Eng. 5(11), 6072–6081 (2019)

    CAS  PubMed  Google Scholar 

  71. M.T. McMahon, J.W. Bulte, Two decades of dendrimers as versatile MRI agents: a tale with and without metals. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 10(3), e1496 (2018)

    PubMed  Google Scholar 

  72. J.K. Patra et al., Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16(1), 71 (2018)

    Google Scholar 

  73. L.H. Bryant et al., Pharmacokinetics of a high-generation dendrimer–Gd-DOTA. Acad. Radiol. 9(1), S29–S33 (2002)

    PubMed  Google Scholar 

  74. O.P. Perumal et al., The effect of surface functionality on cellular trafficking of dendrimers. Biomaterials 29(24–25), 3469–3476 (2008)

    CAS  PubMed  Google Scholar 

  75. H.B. Agashe et al., Investigations on the toxicological profile of functionalized fifth-generation poly (propylene imine) dendrimer. J. Pharm. Pharmacol. 58(11), 1491–1498 (2006)

    CAS  PubMed  Google Scholar 

  76. S. Zhang et al., Radical dendrimers based on biocompatible oligoethylene glycol dendrimers as contrast agents for MRI. Pharmaceutics 12(8), 772 (2020)

    CAS  PubMed Central  Google Scholar 

  77. B. Gorain et al., The use of nanoscaffolds and dendrimers in tissue engineering. Drug Discov. Today 22(4), 652–664 (2017)

    CAS  PubMed  Google Scholar 

  78. A. Taheri-Kafrani, H. Shirzadfar, E. Tavassoli-Kafrani, Dendrimers and dendrimers-grafted superparamagnetic iron oxide nanoparticles: synthesis, characterization, functionalization, and biological applications in drug delivery systems, in Nano-and Microscale Drug Delivery Systems. (Elsevier, Amsterdam, 2017), pp. 75–94

    Google Scholar 

  79. S. Shukla et al., Biodegradable polymeric nanostructures in therapeutic applications: opportunities and challenges. RSC Adv. 6(97), 94325–94351 (2016)

    CAS  Google Scholar 

  80. K.A. Boduch-Lee et al., Design and synthesis of hydroxyapatite composites containing an mPEG−dendritic poly (l-lysine) star polycaprolactone. Macromolecules 37(24), 8959–8966 (2004)

    CAS  Google Scholar 

  81. I. Rajzer, Fabrication of bioactive polycaprolactone/hydroxyapatite scaffolds with final bilayer nano-/micro-fibrous structures for tissue engineering application. J. Mater. Sci. 49(16), 5799–5807 (2014)

    CAS  Google Scholar 

  82. J.M. Oliveira et al., The osteogenic differentiation of rat bone marrow stromal cells cultured with dexamethasone-loaded carboxymethylchitosan/poly (amidoamine) dendrimer nanoparticles. Biomaterials 30(5), 804–813 (2009)

    CAS  PubMed  Google Scholar 

  83. N. Tomar, Dendrimers as nanocarriers in cancer chemotherapy. Anticancer Res. 8, 12 (2019)

    Google Scholar 

  84. J. Hu, K. Hu, Y. Cheng, Tailoring the dendrimer core for efficient gene delivery. Acta Biomater. 35, 1–11 (2016)

    PubMed  Google Scholar 

  85. M. Gorzkiewicz et al., Application of new lysine-based peptide dendrimers D3K2 and D3G2 for gene delivery: Specific cytotoxicity to cancer cells and transfection in vitro. Bioorg. Chem. 95, 103504 (2020)

    CAS  PubMed  Google Scholar 

  86. J.M. Fréchet, Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. Science 263(5154), 1710–1715 (1994)

    PubMed  Google Scholar 

  87. P. Kesharwani, K. Jain, N.K. Jain, Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci. 39(2), 268–307 (2014)

    CAS  Google Scholar 

  88. A.S.P. Kumar, S. Latha, P. Selvamani, Dendrimers: multifunctional drug delivery carriers. Int. J. Technol. Res. Engine 2, 1569–1575 (2015)

    Google Scholar 

  89. W.E. Bawarski et al., Emerging nanopharmaceuticals. Nanomed. Nanotechnol. Biol. Med. 4(4), 273–282 (2008)

    CAS  Google Scholar 

  90. D.G. Mullen et al., Design, synthesis, and biological functionality of a dendrimer-based modular drug delivery platform. Bioconjug. Chem. 22(4), 679–689 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  91. J. Singh et al., Dendrimers in anticancer drug delivery: mechanism of interaction of drug and dendrimers. Artif. Cells Nanomed. Biotechnol. 44(7), 1626–1634 (2016)

    CAS  PubMed  Google Scholar 

  92. G.A. Hughes, Nanostructure-mediated drug delivery. Nanomed. Nanotechnol. Biol. Med. 1(1), 22–30 (2005)

    CAS  Google Scholar 

  93. D. Huang, D. Wu, Biodegradable dendrimers for drug delivery. Mater. Sci. Eng. C 90, 713–727 (2018)

    CAS  Google Scholar 

  94. G. Pasut et al., PEG-epirubicin conjugates with high drug loading. J. Bioact. Compat. Polym. 20(3), 213–230 (2005)

    CAS  Google Scholar 

  95. M. Liu, J.M. Fréchet, Designing dendrimers for drug delivery. Pharm. Sci. Technol. Today 2(10), 393–401 (1999)

    CAS  PubMed  Google Scholar 

  96. W.-D. Jang et al., Bioinspired application of dendrimers: from bio-mimicry to biomedical applications. Prog. Polym. Sci. 34(1), 1–23 (2009)

    CAS  Google Scholar 

  97. Y. Cheng et al., New insights into the interactions between dendrimers and surfactants: 2. Design of new drug formulations based on dendrimer−surfactant aggregates. J. Phys. Chem. B 113(24), 8339–8346 (2009)

    CAS  PubMed  Google Scholar 

  98. J.J. Michels et al., Well-defined assemblies of adamantyl-terminated poly (propylene imine) dendrimers and β-cyclodextrin in water. J. Chem. Soc. Perkin Trans. 2 (2000). https://doi.org/10.1039/b002689l

    Article  Google Scholar 

  99. V. Mishra, U. Gupta, N. Jain, Surface-engineered dendrimers: a solution for toxicity issues. J. Biomater. Sci. Polym. Ed. 20(2), 141–166 (2009)

    CAS  PubMed  Google Scholar 

  100. H. Yang, W.J. Kao, Dendrimers for pharmaceutical and biomedical applications. J. Biomater. Sci. Polym. Ed. 17(1–2), 3–19 (2006)

    CAS  PubMed  Google Scholar 

  101. M.J. Cloninger, Biological applications of dendrimers. Curr. Opin. Chem. Biol. 6(6), 742–748 (2002)

    CAS  PubMed  Google Scholar 

  102. O. Milhem et al., Polyamidoamine Starburst® dendrimers as solubility enhancers. Int. J. Pharm. 197(1–2), 239–241 (2000)

    CAS  PubMed  Google Scholar 

  103. F. Wang et al., Reducing cytotoxicity while improving anti-cancer drug loading capacity of polypropylenimine dendrimers by surface acetylation. Acta Biomater. 8(12), 4304–4313 (2012)

    CAS  PubMed  Google Scholar 

  104. P. Kolhe et al., Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Int. J. Pharm. 259(1–2), 143–160 (2003)

    CAS  PubMed  Google Scholar 

  105. V. Kabanov et al., Polyelectrolyte behavior of astramol poly (propyleneimine) dendrimers. Macromolecules 31(15), 5142–5144 (1998)

    CAS  PubMed  Google Scholar 

  106. E. Murugan et al., Evaluation of surface acetylated and internally quaternized poly (propylene imine) dendrimer as a biocompatible drug carrier for piroxicam as a model drug. RSC Adv. 5(129), 106461–106475 (2015)

    CAS  Google Scholar 

  107. A.K. Patri, J.F. Kukowska-Latallo, J.R. Baker Jr., Targeted drug delivery with dendrimers: comparison of the release kinetics of covalently conjugated drug and non-covalent drug inclusion complex. Adv. Drug Deliv. Rev. 57(15), 2203–2214 (2005)

    CAS  PubMed  Google Scholar 

  108. V. Patel et al., Dendrimers as novel drug-delivery system and its applications, in Drug Delivery Systems. (Elsevier, Amsterdam, 2020), pp. 333–392

    Google Scholar 

  109. H. Yang, S.T. Lopina, Penicillin V-conjugated PEG-PAMAM star polymers. J. Biomater. Sci. Polym. Ed. 14(10), 1043–1056 (2003)

    CAS  PubMed  Google Scholar 

  110. R. Shukla et al., HER2 specific delivery of methotrexate by dendrimer conjugated anti-HER2 mAb. Nanotechnology 19(29), 295102 (2008)

    PubMed  PubMed Central  Google Scholar 

  111. B.K. Nanjwade et al., Dendrimers: emerging polymers for drug-delivery systems. Eur. J. Pharm. Sci. 38(3), 185–196 (2009)

    CAS  PubMed  Google Scholar 

  112. J.B. Wolinsky, M.W. Grinstaff, Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv. Drug Deliv. Rev. 60(9), 1037–1055 (2008)

    CAS  PubMed  Google Scholar 

  113. S.H. Medina, M.E. El-Sayed, Dendrimers as carriers for delivery of chemotherapeutic agents. Chem. Rev. 109(7), 3141–3157 (2009)

    CAS  PubMed  Google Scholar 

  114. A.S. Chauhan, Dendrimers for drug delivery. Molecules 23(4), 938 (2018)

    PubMed Central  Google Scholar 

  115. M. Markowicz-Piasecka, E. Mikiciuk-Olasik, Dendrimers in drug delivery, in Nanobiomaterials in Drug Delivery. (Elsevier, Amsterdam, 2016), pp. 39–74

    Google Scholar 

  116. M. Markowicz et al., Evaluation of poly (amidoamine) dendrimers as potential carriers of iminodiacetic derivatives using solubility studies and 2D-NOESY NMR spectroscopy. J. Biol. Phys. 38(4), 637–656 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  117. M. Najlah et al., Synthesis, characterization and stability of dendrimer prodrugs. Int. J. Pharm. 308(1–2), 175–182 (2006)

    CAS  PubMed  Google Scholar 

  118. M. Ficker et al., Complexes of indomethacin with 4-carbomethoxy-pyrrolidone PAMAM dendrimers show improved anti-inflammatory properties and temperature-dependent binding and release profile. Mol. Pharm. 15(8), 3573–3582 (2018)

    CAS  PubMed  Google Scholar 

  119. M. Gorzkiewicz et al., Pyrrolidone-modified PAMAM dendrimers enhance anti-inflammatory potential of indomethacin in vitro. Colloids Surf. B 181, 959–962 (2019)

    CAS  Google Scholar 

  120. L.D. Pedro-Hernández et al., Synthesis, characterization, and nanomedical applications of conjugates between resorcinarene-dendrimers and ibuprofen. Nanomaterials 7(7), 163 (2017)

    PubMed Central  Google Scholar 

  121. J. Manikkath et al., Influence of peptide dendrimers and sonophoresis on the transdermal delivery of ketoprofen. Int. J. Pharm. 521(1–2), 110–119 (2017)

    CAS  PubMed  Google Scholar 

  122. Ł Uram et al., The effect of biotinylated PAMAM G3 dendrimers conjugated with COX-2 inhibitor (celecoxib) and PPARγ agonist (Fmoc-L-Leucine) on human normal fibroblasts, immortalized keratinocytes and glioma cells in vitro. Molecules 24(20), 3801 (2019)

    CAS  PubMed Central  Google Scholar 

  123. Ł Uram et al., Biotinylated PAMAM G3 dendrimer conjugated with celecoxib and/or Fmoc-l-Leucine and its cytotoxicity for normal and cancer human cell lines. Eur. J. Pharm. Sci. 124, 1–9 (2018)

    CAS  PubMed  Google Scholar 

  124. J. Manikkath et al., Low frequency ultrasound and PAMAM dendrimer facilitated transdermal delivery of ketoprofen. J. Drug Deliv. Sci. Technol. 41, 334–343 (2017)

    CAS  Google Scholar 

  125. B. Huang et al., Dendrimer-coupled sonophoresis-mediated transdermal drug-delivery system for diclofenac. Drug Des. Dev. Therapy 9, 3867 (2015)

    CAS  Google Scholar 

  126. A.J. Perisé-Barrios et al., Improved efficiency of ibuprofen by cationic carbosilane dendritic conjugates. Mol. Pharm. 13(10), 3427–3438 (2016)

    PubMed  Google Scholar 

  127. A.S. Ertürk, M.U. Gürbüz, EDA Çekirdekli Amin, TRIS ve Karboksil Sonlu PAMAM Dendrimerleri Kullanarak Ketoprofenin Çözünürlüğünü Geliştirme. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22(2), 768–773 (2018)

    Google Scholar 

  128. S. Al-Azzawi et al., Dendrimeric poly (Epsilon-Lysine) delivery systems for the enhanced permeability of flurbiprofen across the blood-brain barrier in Alzheimer’s disease. Int. J. Mol. Sci. 19(10), 3224 (2018)

    PubMed Central  Google Scholar 

  129. A. D’Emanuele, D. Attwood, Dendrimer–drug interactions. Adv. Drug Deliv. Rev. 57(15), 2147–2162 (2005)

    CAS  PubMed  Google Scholar 

  130. P. Singh et al., Folate and folate− PEG− PAMAM dendrimers: synthesis, characterization, and targeted anticancer drug delivery potential in tumor bearing mice. Bioconjug. Chem. 19(11), 2239–2252 (2008)

    CAS  PubMed  Google Scholar 

  131. D. Chandrasekar et al., Folate coupled poly (ethyleneglycol) conjugates of anionic poly (amidoamine) dendrimer for inflammatory tissue specific drug delivery. J. Biomed. Mater. Res. A 82(1), 92–103 (2007)

    PubMed  Google Scholar 

  132. R.I. Castro, O. Forero-Doria, L. Guzman, Perspectives of dendrimer-based nanoparticles in cancer therapy. Anais da Academia Brasileira de Ciências 90(2), 2331–2346 (2018)

    CAS  PubMed  Google Scholar 

  133. S. Kim et al., Engineered polymers for advanced drug delivery. Eur. J. Pharm. Biopharm. 71(3), 420–430 (2009)

    CAS  PubMed  Google Scholar 

  134. G. Pasut, F. Veronese, Polymer–drug conjugation, recent achievements and general strategies. Prog. Polym. Sci. 32(8–9), 933–961 (2007)

    CAS  Google Scholar 

  135. S.G. Sampathkumar, K.J. Yarema, in Dendrimers in Cancer Treatment and Diagnosis, Nanotechnologies for the Life Sciences (Wiley, 2007)

  136. Y. Yue et al., Synthesis and characterization of G5 PAMAM dendrimer containing daunorubicin for targeting cancer cells. Arch. Pharmacal. Res. 35(2), 343–349 (2012)

    CAS  Google Scholar 

  137. J.R. Baker, Dendrimer-based nanoparticles for cancer therapy. Hematology 2009(1), 708–719 (2009)

    Google Scholar 

  138. M. Marcinkowska et al., Multicomponent conjugates of anticancer drugs and monoclonal antibody with PAMAM dendrimers to increase efficacy of HER-2 positive breast cancer therapy. Pharm. Res. 36(11), 154 (2019)

    PubMed  PubMed Central  Google Scholar 

  139. D. Yoyen-Ermis et al., Tumor-induced myeloid cells are reduced by gemcitabine-loaded PAMAM dendrimers decorated with anti-Flt1 antibody. Mol. Pharm. 15(4), 1526–1533 (2018)

    CAS  PubMed  Google Scholar 

  140. M. Marcinkowska et al., Conjugate of PAMAM dendrimer, doxorubicin and monoclonal antibody—trastuzumab: the new approach of a well-known strategy. Polymers 10(2), 187 (2018)

    PubMed Central  Google Scholar 

  141. S.A. Torres-Pérez, M. del Pilar Ramos-Godínez, E. Ramón-Gallegos, Glycosylated one-step PAMAM dendrimers loaded with methotrexate for target therapy in breast cancer cells MDA-MB-231. J. Drug Deliv. Sci. Technol. 58, 101769 (2020)

    Google Scholar 

  142. D.-D. Chang et al., Click synthesis of glycosylated porphyrin-cored PAMAM dendrimers with specific recognition and thermosensitivity. J. Polym. Res. 25(12), 257 (2018)

    Google Scholar 

  143. A. Sharma et al., Effect of mannose targeting of hydroxyl PAMAM dendrimers on cellular and organ biodistribution in a neonatal brain injury model. J. Control. Release 283, 175–189 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  144. H. Kulhari et al., Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Sci. Rep. 6(1), 1–13 (2016)

    Google Scholar 

  145. H. Kulhari et al., Optimization of carboxylate-terminated poly (amidoamine) dendrimer-mediated cisplatin formulation. Drug Dev. Ind. Pharm. 41(2), 232–238 (2015)

    CAS  PubMed  Google Scholar 

  146. H. Bhatt, B. Ghosh, S. Biswas, Cell-penetrating peptide and α-tocopherol-conjugated poly (amidoamine) dendrimers for improved delivery and anticancer activity of loaded paclitaxel. ACS Appl. Bio Mater. 3(5), 3157–3169 (2020)

    CAS  Google Scholar 

  147. S.V.K. Rompicharla et al., Octa-arginine modified poly (amidoamine) dendrimers for improved delivery and cytotoxic effect of paclitaxel in cancer. Artif. Cells Nanomed. Biotechnol. 46(sup2), 847–859 (2018)

    CAS  PubMed  Google Scholar 

  148. K. Tokarczyk, B. Jachimska, Characterization of G4 PAMAM dendrimer complexes with 5-fluorouracil and their interactions with bovine serum albumin. Colloids Surf. A 561, 357–363 (2019)

    CAS  Google Scholar 

  149. C. Song et al., Efficient co-delivery of microRNA 21 inhibitor and doxorubicin to cancer cells using core–shell tecto dendrimers formed via supramolecular host–guest assembly. J. Mater. Chem. B 8(14), 2768–2774 (2020)

    CAS  PubMed  Google Scholar 

  150. D.F. Argenta, S.M. Martelli, T. Caon, Dendrimer as a platform for drug delivery in the skin, in Materials for Biomedical Engineering. (Elsevier, Amsterdam, 2019), pp. 331–367

    Google Scholar 

  151. R.V. Movliya, P.M. Patel, Role of dendrimer in drug solubilisation—a review. Drug Deliv. Lett. 9(4), 265–276 (2019)

    CAS  Google Scholar 

  152. S. Svenson, D.A. Tomalia, Dendrimers in biomedical applications—reflections on the field. Adv. Drug Deliv. Rev. 64, 102–115 (2012)

    Google Scholar 

  153. V.K. Yellepeddi, H. Ghandehari, Pharmacokinetics of oral therapeutics delivered by dendrimer-based carriers. Expert Opin. Drug Deliv. 16(10), 1051–1061 (2019)

    CAS  PubMed  Google Scholar 

  154. J.D.A.K. Twibanire, T.B. Grindley, Polyester dendrimers: smart carriers for drug delivery. Polymers 6(1), 179–213 (2014)

    Google Scholar 

  155. K.M. Kitchens et al., Transport of poly (amidoamine) dendrimers across Caco-2 cell monolayers: influence of size, charge and fluorescent labeling. Pharm. Res. 23(12), 2818–2826 (2006)

    CAS  PubMed  Google Scholar 

  156. V.K. Yellepeddi et al., Pediatric oral formulation of dendrimer-N-acetyl-l-cysteine conjugates for the treatment of neuroinflammation. Int. J. Pharm. 545(1–2), 113–116 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  157. H.S. Sardo et al., A review on 5-aminosalicylic acid colon-targeted oral drug delivery systems. Int. J. Pharm. 558, 367–379 (2019)

    Google Scholar 

  158. R. Jevprasesphant et al., Engineering of dendrimer surfaces to enhance transepithelial transport and reduce cytotoxicity. Pharm. Res. 20(10), 1543–1550 (2003)

    CAS  PubMed  Google Scholar 

  159. A. D’emanuele et al., The use of a dendrimer-propranolol prodrug to bypass efflux transporters and enhance oral bioavailability. J. Control. Release 95(3), 447–453 (2004)

    CAS  PubMed  Google Scholar 

  160. M.G. Lancina III., H. Yang, Dendrimers for ocular drug delivery. Can. J. Chem. 95(9), 897–902 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  161. T.F. Vandamme, L. Brobeck, Poly (amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J. Control. Release 102(1), 23–38 (2005)

    CAS  PubMed  Google Scholar 

  162. P.N. Desai, H. Yang, Synthesis and characterization of photocurable polyionic hydrogels. MRS Online Proc. Lib. Arch. (2008). https://doi.org/10.1557/PROC-1095-EE05-05

    Article  Google Scholar 

  163. U. Kandekar et al., Dendrimers: novel drug nanocarriers. Int. J. Pharm. Sci. Res. 2(5), 1086 (2011)

    CAS  Google Scholar 

  164. S. Bai, C. Thomas, F. Ahsan, Dendrimers as a carrier for pulmonary delivery of enoxaparin, a low-molecular weight heparin. J. Pharm. Sci. 96(8), 2090–2106 (2007)

    CAS  PubMed  Google Scholar 

  165. M. Nasr et al., PAMAM dendrimers as aerosol drug nanocarriers for pulmonary delivery via nebulization. Int. J. Pharm. 461(1–2), 242–250 (2014)

    CAS  PubMed  Google Scholar 

  166. L.M. Kaminskas et al., Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J. Control. Release 183, 18–26 (2014)

    CAS  PubMed  Google Scholar 

  167. U.J. Chigbo, A.E. Ugochukwu, D.F. John, Dendrimers: a novel tool for drug delivery and targeting. Univers. J. Pharm. Res. 2(3), (2017). https://doi.org/10.22270/ujpr.v2i3.RW5

  168. A. Castonguay et al., Dendrimers as bactericides. New J. Chem. 36(2), 199–204 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

This manuscript was supported by Pharmacotherapy Department, Faculty of Pharmacy, Bagyattallah University of Medical Sciences, and Tehran Iran.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunes Panahi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikzamir, M., Hanifehpour, Y., Akbarzadeh, A. et al. Applications of Dendrimers in Nanomedicine and Drug Delivery: A Review. J Inorg Organomet Polym 31, 2246–2261 (2021). https://doi.org/10.1007/s10904-021-01925-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-021-01925-2

Keywords

Navigation