Skip to main content

Advertisement

Log in

Transferrin Receptor Targeted Cellular Delivery of Doxorubicin Via a Reduction-Responsive Peptide-Drug Conjugate

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Transferrin receptors (TfRs) are overexpressed in tumor cells but are scarce in normal tissues, which makes TfR an attractive target for drug treatment of cancer. The objective of this study was to evaluate the potential of BP9a (CAHLHNRS) as a peptide vector for constructing TfR targeted peptide-drug conjugates and selective drug delivery.

Methods

Doxorubicin (DOX) was connected to BP9a via a disulfide-intercalating linker to afford a reduction-responsive BP9a-SS-DOX conjugate. By using HepG2 human liver cancer cells and L-O2 normal hepatic cells as TfR over-expressing and low-expressing in vitro models, respectively, TfR mediated cellular uptake of this conjugate was studied by using flow cytometry and confocal laser scanning microscopy. The in vitro cytotoxicities of the conjugate against HepG2 and L-O2 cells were examined by cell counting kit-8 (CCK-8) assay to evaluate its tumorous specificity.

Results

Cellular uptake and TfR blockage test results showed that the BP9a-SS-DOX conjugate gained entry into HepG2 cells via endocytosis mediated by TfR and mainly accumulated in cytoplasm. The in vitro antiproliferative activity of this conjugate against HepG2 cells (IC50 6.21 ± 1.12 μM) was approximately one-sixth of that of free DOX (IC50 1.03 ± 0.13 μM). However, its cytotoxic effect on L-O2 cells was obviously reduced compared with that of free DOX.

Conclusions

The BP9a-SS-DOX conjugate showed specific antiproliferative activity against HepG2 liver cancer cells. Our study suggests that BP9a has the potential to target chemotherapeutic agents to tumor cells over-expressing TfR and facilitate selective drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CCK-8:

Cell counting kit-8

CTC:

Chlorotrityl chloride

DAPI:

4′, 6-diamidino-2-phenylindole

DIC:

N, N′-diisopropylcarbodiimide

DIPEA:

N, N-diisopropylethylamine

DMF:

N, N-dimethylformamide

DMSO:

Dimethyl sulfoxide

DOX:

Doxorubicin

EDT:

1, 2-ethanedithiol

EGFP:

Enhanced green fluorescence protein

ESI MS:

Electrospray ionization mass spectrometry

Fmoc:

9-fluorenylmethoxycarbonyl

HOBt:

1-hydroxybenzotriazole

MFI:

Mean fluorescence intensity

RP-HPLC:

Reversed-phase high-performance liquid chromatography

SPDP:

3-(2-pyridyldithio) propionic acid N-hydroxysuccinimide ester

TEA:

Triethylamine

TFA:

Trifluoroacetic acid

TfR:

Transferrin receptor

TIS:

Triisopropylsilane

TLC:

Thin-layer chromatography

References

  1. Majumdar S, Siahaan TJ. Peptide-mediated targeted drug delivery. Med Res Rev. 2012;32(3):637–58.

    Article  CAS  PubMed  Google Scholar 

  2. Pérez-Herrero E, Fernández-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79.

    Article  PubMed  CAS  Google Scholar 

  3. Böhme D, Beck-Sickinger AG. Drug delivery and release systems for targeted tumor therapy. J Pept Sci. 2015;21(3):186–200.

    Article  PubMed  CAS  Google Scholar 

  4. Gilad Y, Firer M, Gellerman G. Recent innovations in peptide based targeted drug delivery to cancer cells. Biomedicines. 2016;4(2):11.

    Article  PubMed Central  CAS  Google Scholar 

  5. Kundu A, Nayak DP. Analysis of the signals for polarized transport of influenza virus (a/WSN/33) neuraminidase and human transferrin receptor, type II transmembrane proteins. J Virol. 1994;68(3):1812–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lambert LA, Mitchell SL. Molecular evolution of the transferrin receptor/glutamate carboxy-peptidase II family. J Mol Evol. 2007;64(1):113–28.

    Article  CAS  PubMed  Google Scholar 

  7. Neckers LM, Trepel JB. Transferrin receptor expression and the control of cell growth. Cancer Investig. 1986;4(5):461–70.

    Article  CAS  Google Scholar 

  8. Han L, Huang RQ, Liu SH, Huang SX, Jiang C. Peptide-conjugated PAMAM for targeted doxorubicin delivery to transferrin receptor overexpressed tumors. Mol Pharm. 2010;7(6):2156–65.

    Article  CAS  PubMed  Google Scholar 

  9. Daniels TR, Bernabeu E, Rodríguez JA, Patel S, Kozman M, Chiappetta DA, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta-General Subjects. 2012;1820(3):291–317.

    Article  CAS  Google Scholar 

  10. Tortorella S, Karagiannis TC. The significance of transferrin receptors in oncology: the development of functional nano-based drug delivery systems. Curr Drug Deliv. 2014;11(4):427–43.

    Article  CAS  PubMed  Google Scholar 

  11. Jeong SM, Hwang S, Seong RH. Transferrin receptor regulates pancreatic cancer growth by modulating mitochondrial respiration and ROS generation. Biochem Biophys Res Commun. 2016;471(3):373–9.

    Article  CAS  PubMed  Google Scholar 

  12. Nogueira-Librelotto DR, Codevilla CF, Farooqi A, Rolim CMB. Transferrin-conjugated nanocarriers as active-targeted drug delivery platforms for cancer therapy. Curr Pharm Des. 2017;23(3):454–66.

    Article  CAS  PubMed  Google Scholar 

  13. Li XR, Yang L, Yang Y, Shao M, Liu Y. Preparation and characterization of a novel monoclonal antibody against the extracellular domain of human transferrin receptor. Monoclon Antib Immunodiagn Immunother. 2017;36(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  14. Chiu RYT, Tsuji T, Wang SJ, Wang J, Liu CT, Kamei DT. Improving the systemic drug delivery efficacy of nanoparticles using a transferrin variant for targeting. J Control Release. 2014;180:33–41.

    Article  CAS  PubMed  Google Scholar 

  15. Kang T, Jiang MY, Jiang D, Feng XY, Yao JH, Song QX, et al. Enhancing glioblastoma-specific penetration by functionalization of nanoparticles with an iron-mimic peptide targeting transferrin/transferrin receptor complex. Mol Pharm. 2015;12(8):2947–61.

    Article  CAS  PubMed  Google Scholar 

  16. Amin HH, Meghani NM, Park C, Nguyen VH, Tran TT, Tran PH, et al. Fattigation-platform nanoparticles using apo-transferrin stearic acid as a core for receptor-oriented cancer targeting. Colloids Surf B Biointerfaces. 2017;159:571–9.

    Article  CAS  PubMed  Google Scholar 

  17. Yoon DJ, Chen KY, Lopes AM, Pan AA, Shiloach J, Mason AB, et al. Mathematical modeling of mutant transferrin-CRM107 molecular conjugates for cancer therapy. J Theor Biol. 2017;416:88–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin X, Yan SZ, Qi SS, Xu Q, Han SS, Guo LY, et al. Transferrin-modified nanoparticles for photodynamic therapy enhance the antitumor efficacy of hypocrellin A. Front Pharmacol. 2017;8:815.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Jhaveri A, Deshpande P, Pattni B, Torchilin V. Transferrin-targeted, resveratrol-loaded liposomes for the treatment of glioblastoma. J Control Release. 2018;277:89–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Deshpande P, Jhaveri A, Pattni B, Biswas S, Torchilin V. Transferrin and octaarginine modified dual-functional liposomes with improved cancer cell targeting and enhanced intracellular delivery for the treatment of ovarian cancer. Drug Deliv. 2018;25(1):517–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dai Y, Huan JC, Xiang B, Zhu HL, He C. Antiproliferative and apoptosis triggering potential of paclitaxel-based targeted-lipid nanoparticles with enhanced cellular internalization by transferrin receptors-a study in leukemia cells. Nanoscale Res Lett. 2018;13(1):271.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Zhang L, Zhu XY, Wu SJ, Chen YZ, Tan SM, Liu YJ, et al. Fabrication and evaluation of a γ-PGA-based self-assembly transferrin receptor-targeting anticancer drug carrier. Int J Nanomedicine. 2018;13:7873–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Muddineti OS, Kumari P, Ghosh B, Biswas S. Transferrin-modified vitamin-E/lipid based polymeric micelles for improved tumor targeting and anticancer effect of curcumin. Pharm Res. 2018;35(5):97.

    Article  PubMed  CAS  Google Scholar 

  24. Tang JJ, Wang QT, Yu QW, Qiu Y, Mei L, Wan DD, et al. A stabilized retro-inverso peptide ligand of transferrin receptor for enhanced liposome-based hepatocellular carcinoma-targeted drug delivery. Acta Biomater. 2019;83:379–89.

    Article  CAS  PubMed  Google Scholar 

  25. Tortorella S, Karagiannis TC. Transferrin receptor-mediated endocytosis: a useful target for cancer therapy. J Membr Biol. 2014;247:291–307.

    Article  CAS  PubMed  Google Scholar 

  26. Yang JD, Yang QY, Xu L, Lou J, Dong Z. An epirubicin-peptide conjugate with anticancer activity is dependent upon the expression level of the surface transferrin receptor. Mol Med Rep. 2017;15(1):323–30.

    Article  CAS  PubMed  Google Scholar 

  27. Mukherjee B, Karmakar SD, Hossain CM, Bhattacharya S. Peptides, proteins and peptide/protein-polymer conjugates as drug delivery system. Protein Pept Lett. 2014;21(11):1121–8.

    Article  CAS  PubMed  Google Scholar 

  28. Saw PE, Song EW. Phage display screening of therapeutic peptide for cancer targeting and therapy. Protein Cell. 2019. https://doi.org/10.1007/s13238-019-0639-7.

    Article  Google Scholar 

  29. Wu CH, Liu IJ, Lu RM, Wu HC. Advancement and applications of peptide phage display technology in biomedical science. J Biomed Sci. 2016;23(1):8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Dai XY, Xiong YL, Xu DD, Li LY, Su ZJ, Zhang QH, et al. TfR binding peptide screened by phage display technology-characterization to target cancer cells. Trop J Pharm Res. 2014;13(3):331–8.

    Article  CAS  Google Scholar 

  31. Zheng Q, Xiong YL, Su JZ, Zhang QH, Dai XY, Li LY, et al. Expression of curcin–transferrin receptor binding peptide fusion protein and its anti-tumor activity. Protein Expr Purif. 2013;89(2):181–8.

    Article  CAS  PubMed  Google Scholar 

  32. Ducry L, Stump B. Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug Chem. 2010;21(1):5–13.

    Article  CAS  PubMed  Google Scholar 

  33. Hu W, Cheng L, Cheng LF, Zheng M, Lei QF, Hu ZY, et al. Redox and pH-responsive poly (amidoamine) dendrimer-poly(ethylene glycol) conjugates with disulfide linkages for efficient intracellular drug release. Colloids Surf B Biointerfaces. 2014;123:254–63.

    Article  CAS  PubMed  Google Scholar 

  34. Kuppusamy P, Li HQ, Ilangovan G, Cardounel AJ, Zweier JL, Yamada K, et al. Noninvasive imaging of tumor redox status and its modification by tissue glutathione levels. Cancer Res. 2002;62:307–12.

  35. Dong HQ, Tang M, Li Y, Li YY, Qian D, Shi DL. Disulfide-bridged cleavable PEGylation in polymeric nanomedicine for controlled therapeutic delivery. Nanomedicine. 2015;10(12):1941–58.

    Article  CAS  PubMed  Google Scholar 

  36. Fan ML, Yang DB, Liang XF, Ao JP, Li ZH, Wang HY, et al. Design and biological activity of epidermal growth factor receptor-targeted peptide doxorubicin conjugate. Biomed Pharmacother. 2015;70:268–73.

    Article  CAS  PubMed  Google Scholar 

  37. Lelle M, Kaloyanova S, Freidel C, Theodoropoulou M, Musheev M, Niehrs C, et al. Octreotide-mediated tumor-targeted drug delivery via a cleavable doxorubicin-peptide conjugate. Mol Pharm. 2015;12(12):4290–300.

    Article  CAS  PubMed  Google Scholar 

  38. Song Q, Chuan XX, Chen BL, He B, Zhang H, Dai WB, et al. A smart tumor targeting peptide-drug conjugate, pHLIP-SS-DOX: synthesis and cellular uptake on MCF-7 and MCF-7/Adr cells. Drug Deliv. 2016;23(5):1734–46.

    CAS  PubMed  Google Scholar 

  39. Burns KE, Delehanty JB. Cellular delivery of doxorubicin mediated by disulfide reduction of a peptide-dendrimer bioconjugate. Int J Pharm. 2018;545(1–2):64–73.

    Article  CAS  PubMed  Google Scholar 

  40. Li ST, Zhao HL, Yin ZF, Deng SH, Chang AQ, Qi L. Synthesis of hepatoma transferrin receptor targeting peptide analogue BP9a. Chemistry & Bioengineering. 2018;35(12):27–9.

    CAS  Google Scholar 

  41. Yoon S, Kim WJ, Yoo HS. Dual-responsive breakdown of nanostructures with high doxorubicin payload for apoptotic anticancer therapy. Small. 2013;9(2):284–93.

    Article  CAS  PubMed  Google Scholar 

  42. Du X, Xiong L, Dai S, Qiao SZ. γ-PGA-coated mesoporous silica nanoparticles with covalently attached prodrugs for enhanced cellular uptake and intracellular GSH-responsive release. Adv Healthc Mater. 2015;4(5):771–81.

    Article  CAS  PubMed  Google Scholar 

  43. Shi NQ, Gao W, Xiang B, Qi XR. Enhancing cellular uptake of activable cell-penetrating peptide-doxorubicin conjugate by enzymatic cleavage. Int J Nanomedicine. 2012;7:1613–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang YF, Yang Y, Xie XY, Cai XS, Zhang H, Gong W, et al. PEGylated liposomes with NGR ligand and heat-activable cell-penetrating peptide–doxorubicin conjugate for tumor-specific therapy. Biomaterials. 2014;35(14):4368–81.

    Article  CAS  PubMed  Google Scholar 

  45. Ye WL, Du JB, Zhang BL, Na R, Song YF, Mei QB, et al. Cellular uptake and antitumor activity of DOX-hyd-PEG-FA nanoparticles. PLoS One. 2014;9(5):e97358.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Sheng Y, Xu JH, You YW, Xu FF, Chen Y. Acid-sensitive peptide-conjugated doxorubicin mediates the lysosomal pathway of apoptosis and reverses drug resistance in breast Cancer. Mol Pharm. 2015;12(7):2217–28.

    Article  CAS  PubMed  Google Scholar 

  47. Scomparin A, Salmaso S, Eldar-Boock A, Ben-Shushan D, Ferber S, Tiram G, et al. A comparative study of folate receptor-targeted doxorubicin delivery systems: dosing regimens and therapeutic index. J Control Release. 2015;208:106–20.

    Article  CAS  PubMed  Google Scholar 

  48. Ai SB, Duan JL, Liu X, Bock S, Tian Y, Huang ZB. Biological evaluation of a novel doxorubicin-peptide conjugate for targeted delivery to EGF receptor-overexpressing tumor cells. Mol Pharm. 2011;8(2):375–86.

    Article  CAS  PubMed  Google Scholar 

  49. Nasrolahi Shirazi A, Tiwari R, Chhikara BS, Mandal D, Parang K. Design and biological evaluation of cell-penetrating peptide-doxorubicin conjugates as prodrugs. Mol Pharm. 2013;10(2):488–99.

    Article  CAS  PubMed  Google Scholar 

  50. Soudy R, Chen C, Kaur K. Novel peptide-doxorubicin conjugates for targeting breast cancer cells including the multidrug resistant cells. J Med Chem. 2013;56(19):7564–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Songtao Li or Guiqin Zhao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhao, H., Mao, X. et al. Transferrin Receptor Targeted Cellular Delivery of Doxorubicin Via a Reduction-Responsive Peptide-Drug Conjugate. Pharm Res 36, 168 (2019). https://doi.org/10.1007/s11095-019-2688-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-019-2688-2

Key Words

Navigation