Skip to main content

Advertisement

Log in

Transferrin-Modified Vitamin-E/Lipid Based Polymeric Micelles for Improved Tumor Targeting and Anticancer Effect of Curcumin

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

Transferrin receptor (TfR) is up-regulated in various malignant tumors not only to meet the iron requirement, but also to increase the cell survival via participation in various cellular signaling pathways. Here we explored transferrin as ligand for Poly(ethylene Glycol) (PEG)-ylated vitamin-E/lipid (PE) core micelles (VPM).

Methods

Transferrin modified polymer was synthesized and drug loaded micelles were evaluated in 2D Hela and HepG2 cancer cells for cellular uptake and cytotoxicity and in 3D Hela spheroids for growth inhibition, uptake and penetration studies.

Results

Targeted (Tf-VPM) and non-targeted (VPM) micelles showed mean hydrodynamic diameter of 114.2 ± 0.64 nm and 117.4 ± 0.72 nm and zeta potential was −22.8 ± 0.62 and −14.8 ± 1.74 mV, respectively. Cellular uptake study indicated that the Tf-CVPM were taken up by cancer cells (Hela and HepG2) with higher efficiency. Enhanced cytotoxicity was demonstrated for Tf-VPM compared to CVPM. Marked spheroid growth inhibition following treatment with Tf-CVPM was observed compared to the treatment with non-targeted CVPM.

Conclusions

The developed transferrin-modified micelles have improved ability to solubilize the loaded drugs and could actively target solid tumors by its interaction with over-expressed transferrin receptors. Therefore, the nano-micelles could be further explored for its potential utilization in cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CUR:

Curcumin

C-VPM:

Curcumin loaded VPM

DMEM:

Dulbecco’s modified Eagle’s media

DOPE:

Dioleoyl phosphatidylethanolamine

FBS:

Heat-inactivated fetal bovine serum

FC:

Free curcumin

h:

Hour

Hela:

Human cervical carcinoma cells

HepG2:

Human hepatic carcinoma cells

MEM:

Minimuim essential medium

MTT:

Dimethylthiazol-2-yl)-2,5-di-phenyltetrazolium bromide

PEG-PE:

Polyethylene glycol-phosphatidyl ethanolamine

pNP-PEG-PE:

p-Nitrophenylcarbony-PEG-PE

PPM:

PEG-PE based micelles

Tf:

Transferrin

Tf-CVPM:

Curcumin loaded Tf-VPM

Tf-PP:

Transferrin modified PEG-PE

Tf-VP:

Transferrin modified Vitamin E based polymer

Tf-VPM:

Transferrin modified vitamin E based micelles

VPM:

Vitamin E based micelles

References

  1. Muddineti OS, Ghosh B, Biswas S. Current trends in using polymer coated gold nanoparticles for cancer therapy. Int J Pharm. 2015;484(1):252–67.

    Article  CAS  PubMed  Google Scholar 

  2. Xin Y, Huang Q, Tang J-Q, Hou X-Y, Zhang P, Zhang LZ, et al. Nanoscale drug delivery for targeted chemotherapy. Cancer Lett. 2016;379(1):24–31.

    Article  CAS  PubMed  Google Scholar 

  3. Schmitz N, Pfistner B, Sextro M, Sieber M, Carella AM, Haenel M, et al. Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin's disease: a randomised trial. Lancet. 2002;359(9323):2065–71.

    Article  CAS  PubMed  Google Scholar 

  4. Shi C, Zhang Z, Shi J, Wang F, Luan Y. Co-delivery of docetaxel and chloroquine via PEO–PPO–PCL/TPGS micelles for overcoming multidrug resistance. Int J Pharm. 2015;495(2):932–9.

    Article  CAS  PubMed  Google Scholar 

  5. Abdullin TI, Bondar OV, Nikitina II, Bulatov ER, Morozov MV, Hilmutdinov A, et al. Effect of size and protein environment on electrochemical properties of gold nanoparticles on carbon electrodes. Bioelectrochemistry. 2009;77(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  6. Ford JM, Hait WN. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol Rev. 1990;42(3):155–99.

    CAS  PubMed  Google Scholar 

  7. te Velde EA, Vogten JM, Gebbink MF, van Gorp JM, Voest EE, Borel Rinkes I. Enhanced antitumour efficacy by combining conventional chemotherapy with angiostatin or endostatin in a liver metastasis model. Br J Surg. 2002;89(10):1302–9.

    Article  Google Scholar 

  8. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1):271–84.

    Article  CAS  PubMed  Google Scholar 

  9. Maeda H, Bharate G, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. Eur J Pharm Biopharm. 2009;71(3):409–19.

    Article  CAS  PubMed  Google Scholar 

  10. Atta AH, El-Shenawy AI, Refat MS, Elsabawy KM. Preparation and characterization of some gold nanometric compounds with simple organic materials as precursor: spectroscopic, biological and anti-cancer assessments. J Mol Struct. 2013;1039:51–60.

    Article  CAS  Google Scholar 

  11. Biswas S, Torchilin VP. Nanopreparations for organelle-specific delivery in cancer. Adv Drug Deliv Rev. 2014;66:26–41.

    Article  CAS  PubMed  Google Scholar 

  12. Chandrasekharan P, Maity D, Yong CX, Chuang K-H, Ding J, Feng S-S. Vitamin E (d-alpha-tocopheryl-co-poly(ethylene glycol) 1000 succinate) micelles-superparamagnetic iron oxide nanoparticles for enhanced thermotherapy and MRI. Biomaterials. 2011;32(24):5663–72.

    Article  CAS  PubMed  Google Scholar 

  13. Kutty RV, Feng S-S. Cetuximab conjugated vitamin E TPGS micelles for targeted delivery of docetaxel for treatment of triple negative breast cancers. Biomaterials. 2013;34(38):10160–71.

    Article  CAS  PubMed  Google Scholar 

  14. Muddineti OS, Ghosh B, Biswas S. Current trends in the use of vitamin E-based micellar nanocarriers for anticancer drug delivery. Expert Opin Drug Deliv. 2016;14(6):1–12.

  15. Li P-Y, Lai P-S, Hung W-C, Syu W-J. Poly (L-lactide)-vitamin E TPGS nanoparticles enhanced the cytotoxicity of doxorubicin in drug-resistant MCF-7 breast cancer cells. Biomacromolecules. 2010;11(10):2576–82.

    Article  CAS  PubMed  Google Scholar 

  16. Hayashi T, Tsai S-Y, Mori T, Fujimoto M, Su T-P. Targeting ligand-operated chaperone sigma-1 receptors in the treatment of neuropsychiatric disorders. Expert Opin Ther Targets. 2011;15(5):557–77.

    Article  CAS  PubMed  Google Scholar 

  17. Sriraman SK, Pan J, Sarisozen C, Luther E, Torchilin V. Enhanced cytotoxicity of folic acid-targeted liposomes co-loaded with C6 ceramide and doxorubicin: in vitro evaluation on HeLa, A2780-ADR, and H69-AR cells. Mol Pharm. 2016;13(2):428–37.

    Article  CAS  PubMed  Google Scholar 

  18. Zeng X, Sun Y-X, Qu W, Zhang X-Z, Zhuo R-X. Biotinylated transferrin/avidin/biotinylated disulfide containing PEI bioconjugates mediated p53 gene delivery system for tumor targeted transfection. Biomaterials. 2010;31(17):4771–80.

    Article  CAS  PubMed  Google Scholar 

  19. Tortorella S, Karagiannis TC. Transferrin receptor-mediated endocytosis: a useful target for cancer therapy. J Membr Biol. 2014;247(4):291–307.

    Article  CAS  PubMed  Google Scholar 

  20. Yue J, Liu S, Wang R, Hu X, Xie Z, Huang Y, et al. Transferrin-conjugated micelles: enhanced accumulation and antitumor effect for transferrin-receptor-overexpressing cancer models. Mol Pharm. 2012;9(7):1919–31.

    Article  CAS  PubMed  Google Scholar 

  21. Abouzeid AH, Patel NR, Sarisozen C, Torchilin VP. Transferrin-targeted polymeric micelles co-loaded with curcumin and paclitaxel: efficient killing of paclitaxel-resistant cancer cells. Pharm Res. 2014;31(8):1938–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen H, Zhang T, Zhou Z, Guan M, Wang J, Liu L, et al. Enhanced uptake and cytotoxity of folate-conjugated mitoxantrone-loaded micelles via receptor up-regulation by dexamethasone. Int J Pharm. 2013;448(1):142–9.

    Article  CAS  PubMed  Google Scholar 

  23. Nam J-P, Park S-C, Kim T-H, Jang J-Y, Choi C, Jang M-K, et al. Encapsulation of paclitaxel into lauric acid-O-carboxymethyl chitosan-transferrin micelles for hydrophobic drug delivery and site-specific targeted delivery. Int J Pharm. 2013;457(1):124–35.

    Article  CAS  PubMed  Google Scholar 

  24. Zhang P, Hu L, Yin Q, Zhang Z, Feng L, Li Y. Transferrin-conjugated polyphosphoester hybrid micelle loading paclitaxel for brain-targeting delivery: synthesis, preparation and in vivo evaluation. J Control Release. 2012;159(3):429–34.

    Article  CAS  PubMed  Google Scholar 

  25. Muthu MS, Kutty RV, Luo Z, Xie J, Feng S-S. Theranostic vitamin E TPGS micelles of transferrin conjugation for targeted co-delivery of docetaxel and ultra bright gold nanoclusters. Biomaterials. 2015;39:234–48.

    Article  CAS  PubMed  Google Scholar 

  26. Muddineti OS, Kumari P, Ghosh B, Torchilin VP, Biswas S. d-α-Tocopheryl succinate/Phosphatidyl ethanolamine conjugated amphiphilic polymer-based Nanomicellar system for the efficient delivery of curcumin and to overcome multiple drug resistance in cancer. ACS Appl Mater Interfaces. 2017;9:16778–92.

    Article  CAS  PubMed  Google Scholar 

  27. Torchilin V. Targeted polymeric micelles for delivery of poorly soluble drugs. Cell Mol Life Sci. 2004;61(19):2549–59.

    Article  CAS  PubMed  Google Scholar 

  28. Sarisozen C, Abouzeid AH, Torchilin VP. The effect of co-delivery of paclitaxel and curcumin by transferrin-targeted PEG-PE-based mixed micelles on resistant ovarian cancer in 3-D spheroids and in vivo tumors. Eur J Pharm Biopharm. 2014;88(2):539–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu H, Zhu L, Torchilin VP. pH-sensitive poly (histidine)-PEG/DSPE-PEG co-polymer micelles for cytosolic drug delivery. Biomaterials. 2013;34(4):1213–22.

    Article  CAS  PubMed  Google Scholar 

  30. Yang C, Chen H, Zhao J, Pang X, Xi Y, Zhai G. Development of a folate-modified curcumin loaded micelle delivery system for cancer targeting. Colloids Surf B: Biointerfaces. 2014;121:206–13.

    Article  CAS  PubMed  Google Scholar 

  31. Liang N, Sun S, Li X, Piao H, Piao H, Cui F, et al. Alpha-tocopherol succinate-modified chitosan as a micellar delivery system for paclitaxel: preparation, characterization and in vitro/in vivo evaluations. Int J Pharm. 2012;423(2):480–8.

    Article  CAS  PubMed  Google Scholar 

  32. Sriraman SK, Salzano G, Sarisozen C, Torchilin V. Anti-cancer activity of doxorubicin-loaded liposomes co-modified with transferrin and folic acid. Eur J Pharm Biopharm. 2016;105:40–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pereira PM, Berisha N, Bhupathiraju NDK, Fernandes R, Tomé JP, Drain CM. Cancer cell spheroids are a better screen for the photodynamic efficiency of glycosylated photosensitizers. PLoS One. 2017;12(5):e0177737.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Li L, Yang Q, Zhou Z, Zhong J, Huang Y. Doxorubicin-loaded, charge reversible, folate modified HPMA copolymer conjugates for active cancer cell targeting. Biomaterials. 2014;35(19):5171–87.

    Article  CAS  PubMed  Google Scholar 

  35. Liu Z, Gao X, Kang T, Jiang M, Miao D, Gu G, et al. B6 peptide-modified PEG-PLA nanoparticles for enhanced brain delivery of neuroprotective peptide. Bioconjug Chem. 2013;24(6):997–1007.

    Article  CAS  PubMed  Google Scholar 

  36. Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J Cell Biol. 1983;97(2):329–39.

    Article  CAS  PubMed  Google Scholar 

  37. McMahon HT, Boucrot E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol. 2011;12(8):517–33.

    Article  CAS  PubMed  Google Scholar 

  38. Danhier F, Kouhé TTB, Duhem N, Ucakar B, Staub A, Draoui N, et al. Vitamin E-based micelles enhance the anticancer activity of doxorubicin. Int J Pharm. 2014;476(1):9–15.

    Article  CAS  PubMed  Google Scholar 

  39. Tima S, Ampasavate SCA, Berkland C, Okonogi S. Stable curcumin-loaded polymeric micellar formulation for enhancing cellular uptake and cytotoxicity to FLT3 overexpressing EoL-1 leukemic cells. Eur J Pharm Biopharm. 2017;114:57–68.

    Article  CAS  PubMed  Google Scholar 

  40. Zanoni M, Piccinini F, Arienti C, Zamagni A, Santi S, Polico R, et al. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep. 2016;6:19103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sambale F, Lavrentieva A, Stahl F, Blume C, Stiesch M, Kasper C, et al. Three dimensional spheroid cell culture for nanoparticle safety testing. J Biotechnol. 2015;205:120–9.

    Article  CAS  PubMed  Google Scholar 

  42. Perche F, Torchilin VP. Cancer cell spheroids as a model to evaluate chemotherapy protocols. Cancer Biol Ther. 2012;13(12):1205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The work was supported in part by the grants provided by the Department of Science and Technology (CS-269/2013), Government of India and the Department of Biotechnology (BT/Bio-CARe/07/10003/2013–14), Govt of India to Swati Biswas. Omkara Swami gratefully acknowledges Indian Council of Medical Research (2014–24,190), Department of Health Research, Ministry of Health & Family Welfare, Government of India for awarding him with the Senior Research Fellowship (SRF). There are no conflicts of interest

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swati Biswas.

Electronic supplementary material

ESM 1

(DOCX 320 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muddineti, O.S., Kumari, P., Ghosh, B. et al. Transferrin-Modified Vitamin-E/Lipid Based Polymeric Micelles for Improved Tumor Targeting and Anticancer Effect of Curcumin. Pharm Res 35, 97 (2018). https://doi.org/10.1007/s11095-018-2382-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11095-018-2382-9

Key words

Navigation