Skip to main content
Log in

Dopamine D2 Receptor Occupancy as a Predictor of Catalepsy in Rats: A Pharmacokinetic-Pharmacodynamic Modeling Approach

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Objectives

Dopamine D2 receptor occupancy (D2RO) is the major determinant of efficacy and safety in schizophrenia drug therapy. Excessive D2RO (>80%) is known to cause catalepsy (CAT) in rats and extrapyramidal side effects (EPS) in human. The objective of this study was to use pharmacokinetic and pharmacodynamic modeling tools to relate CAT with D2RO in rats and to compare that with the relationship between D2RO and EPS in humans.

Methods

Severity of CAT was assessed in rats at hourly intervals over a period of 8 h after antipsychotic drug treatment. An indirect response model with and without Markov elements was used to explain the relationship of D2RO and CAT.

Results

Both models explained the CAT data well for olanzapine, paliperidone and risperidone. However, only the model with the Markov elements predicted the CAT severity well for clozapine and haloperidol. The relationship between CAT scores in rat and EPS scores in humans was implemented in a quantitative manner. Risk of EPS not exceeding 10% over placebo correlates with less than 86% D2RO and less than 30% probability of CAT events in rats.

Conclusion

A quantitative relationship between rat CAT and human EPS was elucidated and may be used in drug discovery to predict the risk of EPS in humans from D2RO and CAT scores measured in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. de Greef R, Maloney A, Olsson-Gisleskog P, Schoemaker J, Panagides J. Dopamine D(2) occupancy as a biomarker for antipsychotics: quantifying the relationship with efficacy and extrapyramidal symptoms. AAPS J. 2011;13(1):121–30.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Kapur S, Remington G, Jones C, Wilson A, DaSilva J, Houle S, et al. High levels of dopamine D-2 receptor occupancy with low-dose haloperidol treatment: a PET study. Am J Psychiatry. 1996;153(7):948–50.

    PubMed  CAS  Google Scholar 

  3. Farde L, Nordstrom AL, Wiesel FA, Pauli S, Halldin C, Sedvall G. Positron emission tomographic analysis of central D1-dopamine and D2-dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine - relation to extrapyramidal side-effects. Arch Gen Psychiatry. 1992;49(7):538–44.

    Article  PubMed  CAS  Google Scholar 

  4. Nordstrom AL, Farde L, Wiesel FA, Forslund K, Pauli S, Halldin C, et al. Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects - a double-blind pet study of schizophrenic-patients. Biol Psychiatry. 1993;33(4):227–35.

    Article  PubMed  CAS  Google Scholar 

  5. Horacek J, Bubenikova-Valesova V, Kopecek M, Palenicek T, Dockery C, Mohr P, et al. Mechanism of action of atypical antipsychotic drugs and the neurobiology of schizophrenia. CNS Drugs. 2006;20(5):389–409.

    Article  PubMed  CAS  Google Scholar 

  6. Hoffman DC, Donovan H. Catalepsy as a rodent model for detecting antipsychotic-drugs with extrapyramidal side-effect liability. Psychopharmacology (Berl). 1995;120(2):128–33.

    Article  CAS  Google Scholar 

  7. Wadenberg MLG, Kapur S, Soliman A, Jones C, Vaccarino F. Dopamine D-2 receptor occupancy predicts catalepsy and the suppression of conditioned avoidance response behavior in rats. Psychopharmacology (Berl). 2000;150(4):422–9.

    Article  CAS  Google Scholar 

  8. Mager DE, Jusko WJ. Development of translational pharmacokinetic-pharmacodynamic models. Clin Pharmacol Ther. 2008;83(6):909–12.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Yassen A, Olofsen E, Kan J, Dahan A, Danhof M. Animal-to-human extrapolation of the pharmacokinetic and pharmacodynamic properties of buprenorphine. Clin Pharmacokinet. 2007;46(5):433–47.

    Article  PubMed  CAS  Google Scholar 

  10. Danhof M, De Lange ECM, Della Pasqua OE, Ploeger BA, Voskuyl RA. Mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modeling in translational drug research. Trends Pharmacol Sci. 2008;29(4):186–91.

    Article  PubMed  CAS  Google Scholar 

  11. Zuideveld KP, Van der Graaf PH, Peletier LA, Danhof M. Allometric scaling of pharmacodynamic responses: application to 5-Ht1A receptor mediated responses from rat to man. Pharm Res. 2007;24(11):2031–9.

    Article  PubMed  CAS  Google Scholar 

  12. Bonate PL. Principles of simulation. Pharmacokinetic-pharmacodynamic modeling and simulation. Springer; 2011. p. 489.

  13. Janssen PAJ, Niemegeers CJE, Schellekens KH. Is it possible to predict the clinical effects of neuroleptic drugs (major tranquilizers) from animal data? Part I. Neuroleptic activity spectra for rats. Arzneim Forsch. 1965;15:104–17.

    CAS  Google Scholar 

  14. Johnson M, Kozielska M, Pilla Reddy V, Vermeulen A, Li C, Grimwood S, et al. Mechanism-based pharmacokinetic-pharmacodynamic modeling of the dopamine D(2) receptor occupancy of olanzapine in rats. Pharm Res. 2011;28(10):2490–504.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Kozielska M, Johnson M, Pilla Reddy V, Vermeulen A, Li C, Grimwood S, et al. Pharmacokinetic-pharmacodynamic modeling of the D2 and 5-HT2A receptor occupancy of risperidone and paliperidone in rats. Pharm Res. 2012;29(7):1932–48.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Parker TJ, Della Pasqua OE, Loizillon E, Chezaubernard C, Jochemsen R, Danhof M. Pharmacokinetic-pharmacodynamic modelling in the early development phase of anti-psychotics: a comparison of the effects of clozapine, S 16924 and S 18327 in the EEG model in rats. Br J Pharmacol. 2001;132(1):151–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Olsen CK, Brennum LT, Kreilgaard M. Using pharmacokinetic-pharmacodynamic modelling as a tool for prediction of therapeutic effective plasma levels of antipsychotics. Eur J Pharmacol. 2008;584(2–3):318–27.

    Article  PubMed  CAS  Google Scholar 

  18. Dayneka NL, Garg V, Jusko WJ. Comparison of four basic models of indirect pharmacodynamic responses. J Pharmacokinet Biopharm. 1993;21(4):457–78.

    Article  PubMed  CAS  Google Scholar 

  19. Ito K, Hutmacher MM, Liu J, Qiu R, Frame B, Miller R. Exposure-response analysis for spontaneously reported dizziness in pregabalin-treated patient with generalized anxiety disorder. Clin Pharmacol Ther. 2008;84(1):127–35.

    Article  PubMed  CAS  Google Scholar 

  20. Sheiner LB, Beal SL, Dunne A. Analysis of nonrandomly censored ordered categorical longitudinal data from analgesic trials. J Am Stat Assoc. 1997;92(440):1235–44.

    Article  Google Scholar 

  21. Beal S, Sheiner LB, Boeckmann A, Bauer RJ. NONMEM user’s guides (1989-2009). Ellicott City: Icon Development Solutions; 2009.

    Google Scholar 

  22. R Development Core Team. R: a language and environment for statistical computing. Vienna: R Fundation for Statistical Computing; 2009.

    Google Scholar 

  23. Lindbom L, Pihlgren P, Jonsson EN. PsN-Toolkit–a collection of computer intensive statistical methods for non-linear mixed effect modeling using NONMEM. Comput Methods Programs Biomed. 2005;79(3):241–57.

    Article  PubMed  Google Scholar 

  24. Pilla Reddy V, Petersson KJ, Suleiman AA, Vermeulen A, Proost JH, Friberg LE. Pharmacokinetic-pharmacodynamic modeling of severity levels of extrapyramidal side effects with Markov property. CPT: Pharmacometrics Syst Pharmacol. 2012;1:e1. doi:10.1038/psp.2012.9.

    CAS  Google Scholar 

  25. Zingmark PH, Kagedal M, Karlsson MO. Modelling a spontaneously reported side effect by use of a Markov mixed-effects model. J Pharmacokinet Pharmacodyn. 2005;32(2):261–81.

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research article was prepared within the framework of project no. D2-104 of the Dutch Top Institute Pharma (Leiden, The Netherlands; www.tipharma.com). The authors acknowledge Dr. Megens from Janssen Research and Development, a division of Janssen Pharmaceutica NV, Beerse, Belgium, for the valuable discussion on animal pharmacology models. The authors have no conflicts of interest that are directly relevant to the contents of this research article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes H. Proost.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, M., Kozielska, M., Pilla Reddy, V. et al. Dopamine D2 Receptor Occupancy as a Predictor of Catalepsy in Rats: A Pharmacokinetic-Pharmacodynamic Modeling Approach. Pharm Res 31, 2605–2617 (2014). https://doi.org/10.1007/s11095-014-1358-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-014-1358-7

KEY WORDS

Navigation