Skip to main content
Log in

Review of DC and AC Arc Plasma at High Pressures Above Atmospheric Pressure

  • Review Article
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In light of the adopted green policies and strategies, thermal plasmas are gaining interest as a potential solution to electrify the industry, particularly for endothermic processes, for their tunable enthalpy and the absence of direct CO2 emissions. However, the majority of industrial applications of thermal plasma technologies are at atmospheric or lower pressure, whether for material processing, waste treatment, gasification, assisted combustion or in electric arc furnaces. Very little information exists on thermal plasmas at pressures above 1 bar, with the majority of academic publications using either analytical or numerical methodologies. The main experimental high-pressure plasma studies conducted date back to the 1960s, the 1970s and 1980s mainly in the US and the EU for aerospace applications, in addition to gas blast circuit breaker and underwater welding applications. However, these systems operate only for a few milliseconds to a few minutes at most. The interest in operating plasma systems at high-pressure is on one hand to reduce the volume of the facilities, and therefore, global costs, and on the other hand, is of practical necessity such as the case of underwater welding and in aerospace application where plasma technology plays a role in duplicating the conditions to which a vehicle is exposed to in atmospheric entry/reentry. This paper reports a thorough literature review on all high-pressure plasma arc studies available to date, including journal articles, books, and declassified reports. The findings of the studies are classified into four categories: DC and AC technologies, electrical characteristics, thermodynamics and heat transfer, and electrode erosion. The gaps and limitations are identified, and the main hypotheses are formulated, (re)opening the way for future high-pressure thermal plasma studies. Operating thermal plasma systems at high pressure could have considerable economic benefits, and thus, leading to competitive pricing for electrified high temperature processes, but faces many challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The manuscript reports a review of several articles, books, reports and projects. The respective data and material can be accessed via the original reference.

Abbreviations

\(U\) :

Voltage

\(P\) :

Pressure

\(d\) :

Diameter

\(I\) :

Current

\(G\) :

Flow rate

\(Eu\) :

Euler number

\(\rho\) :

Density

\(\sigma\) :

Electrical conductivity

\(h\) :

Enthalpy

\(p\) :

Pressure

subscript ‘0’:

Characteristic value/reference scale using similarity method

\(\overrightarrow{j}\) :

Current density

\(\overrightarrow{E}\) :

Electric field

\(\kappa\) :

Thermal conductivity

\(\overrightarrow{{q}_{rad}}\) :

Radiative flux

\(\mu\) :

Dynamic viscosity

\(e\) :

Electron charge

\({T}_{e}\) :

Electron temperature

References

  1. Shukla PR, Skea J, Slade R, et al (2022) 2022: mitigation of climate change. IPCC

  2. Dagle RA, Dagle V, Bearden MD, Holladay JD, Krause TR, Ahmed S (2017) An overview of natural gas conversion technologies for co-production of hydrogen and value-added solid carbon products. https://doi.org/10.2172/1411934

  3. IEA (2022) Global hydrogen review 2022. International Energy Agency

  4. Boulos MI, Fauchais PL, Pfender E (eds) (2023) Handbook of thermal plasmas. https://doi.org/10.1007/978-3-030-84936-8

  5. Murphy AB, Uhrlandt D (2018) Foundations of high-pressure thermal plasmas. Plasma Sources Sci Technol 27:063001

    Google Scholar 

  6. Fulcheri L (1995) From methane to hydrogen, carbon black and water. Int J Hydrog Energy 20:197–202

    CAS  Google Scholar 

  7. Fulcheri L, Schwob Y, Flamant G (1997) Comparison between new carbon nanostructures produced by plasma with industrial carbon black grades. J Phys III 7:491–503

    CAS  Google Scholar 

  8. Fulcheri L, Schwob Y, Fabry F, Flamant G, Chibante LFP, Laplaze D (2000) Fullerene production in a 3-phase AC plasma process. Carbon 38:797–803

    CAS  Google Scholar 

  9. Tanaka Y, Yokomizu Y, Ishikawa M, Matsumura T (1997) Particle composition of high-pressure SF6 Plasma with electron temperature greater than gas temperature. IEEE Trans Plasma Sci 25:991

    CAS  Google Scholar 

  10. Moravej M, Yang X, Nowling GR, Chang JP, Hicks RF, Babayan SE (2004) Physics of high-pressure helium and argon radio-frequency plasmas. J Appl Phys 96:7011–7017

    CAS  Google Scholar 

  11. Boulos M, Fauchais P, Pfender E (1994) Thermal plasmas, fundamentals and applications. Plenum Press, New York

    Google Scholar 

  12. Geister DE (1967) Analysis and design of a high-pressure AC arc heater. Aerospace Research Laboratories Office of Aerospace Research United States Air Force Wright-Patterson Air Force Base

  13. Phillips R, Geister DE, Handy P, Bowen SW (1964) Three-phase ac arc heater. Technical report. Aerospace Reasearch Laboratories, US Air Force

  14. Fulcheri L, Fabry F, Takali S, Rohani V (2015) Three-phase AC Arc plasma systems: a review. Plasma Chem Plasma Process 35:565–585

    CAS  Google Scholar 

  15. Phillips RL (1967) Theory of the non-stationary arc column. Br J Appl Phys 18:65–78

    CAS  Google Scholar 

  16. Geister D (1969) A high pressure AC arc heater system. In: 4th aerodynamic testing conference. https://doi.org/10.2514/6.1969-348

  17. Bonet C (1980) Thermal plasma technology for processing of refractory materials. Pure Appl Chem 52:1707–1720

    CAS  Google Scholar 

  18. Bonet C, Foex M, Munz R, Gauvin WH (1976) Decomposition of various materials used as electrodes in three-phase alternating current plasma generator. J Phys D Appl Phys 9:L141–L147

    CAS  Google Scholar 

  19. Gold D, Bonet C, Chauvin G, Mathieu AC (1981) Spheroidisation of alumino-silicate particles in a three-phase ac plasma furnace. In: 4th international symposium on plasma chemistry ISPC 4

  20. Bonet C, Gold D, Chauvin G, Delmas R, Petit A, Moisset J (1979) A three phase rotating plasma furnace for processing of hydraulic materials. In: 5th international symposium on plasma chemistry ISPC 5

  21. Allum CJ (1982) The characteristics and structure of high pressure (1–42 bars) gas tungsten arcs. Cranfield Institute of Technology

  22. Allum CJ (1983) Power dissipation in the column of a TIG welding arc. J Phys D Appl Phys 16:2149–2165

    Google Scholar 

  23. Allum CJ (1981) Gas flow in the column of a TIG welding arc. J Phys D Appl Phys 14:1041–1059

    CAS  Google Scholar 

  24. Allum CJ (1983) Mechanisms of power dissipation in the column of high pressure argon-tangsten arcs. In: 1982 London conference on gas discharges and their applications

  25. Farmer AJD, Haddad GN, Kovitya P (1988) Temperature distributions in a free-burning arc. IV. Results in argon at elevated pressures. J Phys D Appl Phys 21:432–436

    CAS  Google Scholar 

  26. Gruenberger TM, Gonzalez-Aguilar J, Fabry F, Fulcheri L, Grivei E, Probst N, Flamant G, Okuno H, Charlier J-C (2004) Production of carbon nanotubes and other nanostructures via continuous 3-phase AC plasma processing. Fuller Nanotub Carbon Nanostruct 12:571–581

    CAS  Google Scholar 

  27. Okuno H, Grivei E, Fabry F, Gruenberger TM, Gonzalez-Aguilar J, Palnichenko A, Fulcheri L, Probst N, Charlier J-C (2004) Synthesis of carbon nanotubes and nano-necklaces by thermal plasma process. Carbon 42:2543–2549

    CAS  Google Scholar 

  28. Rehmet C (2013) Theoretical and experimental study of a 3-phase AC plasma torch associated to a gasification process. Mines ParisTech

  29. Rehmet C, Rohani V, Cauneau F, Fulcheri L (2013) 3D unsteady state MHD modeling of a 3-phase AC hot graphite electrodes plasma torch. Plasma Chem Plasma Process 33:491–515

    CAS  Google Scholar 

  30. Rehmet C, Fabry F, Rohani V, Cauneau F, Fulcheri L (2014) A Comparison between MHD modeling and experimental results in a 3-phase AC arc plasma torch: influence of the electrode tip geometry. Plasma Chem Plasma Process 34:975–996

    CAS  Google Scholar 

  31. Rehmet C, Fabry F, Rohani V, Cauneau F, Fulcheri L (2013) High speed video camera and electrical signal analyses of arcs behavior in a 3-phase AC arc plasma torch. Plasma Chem Plasma Process 33:779–796

    CAS  Google Scholar 

  32. Watanabe T, Yatsuda K, Yao Y, Yano T, Matuura T (2010) Innovative in-flight glass-melting technology using thermal plasmas. Pure Appl Chem 82:1337–1351

    CAS  Google Scholar 

  33. Tanaka M, Tsuruoka Y, Liu Y, Matsuura T, Watanabe T (2011) Investigation of multiphase AC arc behavior by high-speed video observation. IEEE Trans Plasma Sci 39:2904–2905

    CAS  Google Scholar 

  34. Tanaka M, Imatsuji T, Hashizume T, Watanabe T, Nagai H, Koiwasaki T, Okuma T (2017) Investigation of temperature characteristics of multiphase AC arc by high-speed visualization. JFST 12:TJFST0024-JFST0024

    Google Scholar 

  35. Tanaka M, Tsuruoka Y, Liu Y, Matsuura T, Watanabe T (2011) Stability analysis of multi-phase AC arc discharge for in-flight glass melting. Curr Appl Phys 11:S35–S39

    Google Scholar 

  36. Matsuura T, Taniguchi K, Watanabe T (2007) A new type of arc plasma reactor with 12-phase alternating current discharge for synthesis of carbon nanotubes. Thin Solid Films 515:4240–4246

    CAS  Google Scholar 

  37. Tanaka M, Hashizume T, Imatsuji T, Nawata Y, Watanabe T (2016) Investigation of erosion mechanism of tungsten-based electrode in multiphase AC arc by high-speed visualization of electrode phenomena. Jpn J Appl Phys 55:07LC01

    Google Scholar 

  38. Tanaka M, Ikeba T, Liu Y, Choi S, Watanabe T (2013) Investigation of electrode erosion mechanism of multi-phase AC Arc by high-speed video camera. J Phys Conf Ser 441:012015

    CAS  Google Scholar 

  39. Ladoux P, Postiglione G, Foch H, Nuns J (2005) A comparative study of AC/DC converters for high-power DC arc furnace. IEEE Trans Ind Electron 52:747–757

    Google Scholar 

  40. Jones R, Reynolds Q, Curr T, Sager D (2011) Some myths about DC arc furnaces. J South Afr Inst Min Metall 111(10):665–674

    Google Scholar 

  41. Neuschutz D (2000) State and trends of the electric arc furnace technology. J High Temp Mater Process 4(1):127–139

    Google Scholar 

  42. Daumov GY, Zhukov MF (1966) Some generalizations relating to the study of electric arcs. J Appl Mech Tech Phys 6:89–97

    Google Scholar 

  43. Dautov GY, Zhukov MF (1967) A criterial generalization of the characteristics of vortexstabilized plasma generators. J Appl Mech Tech Phys 6:76–78

    Google Scholar 

  44. Zhidovich AI, Kravchenko SK, Yas’ko OI (1967) Generalization of the current–voltage characteristics of electric arc heaters. J Eng Phys 13:170–171

    Google Scholar 

  45. Zhidovich AI, Yas’ko OI (1969) Certain problems in generalizing the volt-ampere characteristics of electric arcs swept by various gases. J Eng Phys 16:367–371

    Google Scholar 

  46. Zhidovich AI (1968) Generalization of the current–voltage characteristics of one-sided linear electric-arc heaters stabilized with various gases. J Eng Phys 15:666–668

    Google Scholar 

  47. Zhukov MF, Zasypkin IM (2007) Thermal plasma torches: design, characteristics, application. Cambridge Int Science Publishing

    Google Scholar 

  48. Painter J, Kroutil J (1978) Jupiter entry simulation using a high-performance arc heater. In: 10th space simulation conference. https://doi.org/10.2514/6.1978-1602

  49. Kurochkin Y, Pustogarov A, Ukolov V (1978) Decharge d’arc electrique dans un canal poreux sous une pression gazeuse elevee. TEPLOFIZ. VYS. TEMPER.; S.S.S.R.; DA.

  50. Elenbaas W (1951) The high pressure mercury vapour discharge

  51. Gueye P (2017) Contribution to the development of a new high-pressure plasma process for the production of syngas from CH4 and the retroconversion of CO2. Mines ParisTech

  52. Gueye P, Cressault Y, Rohani V, Fulcheri L (2017) A simplified model for the determination of current–voltage characteristics of a high pressure hydrogen plasma arc. J Appl Phys. https://doi.org/10.1063/1.4976572

    Article  Google Scholar 

  53. Abdo Y, Rohani V, Cauneau F, Fulcheri L (2017) New perspectives on the dynamics of AC and DC plasma arcs exposed to cross-fields. J Phys D Appl Phys 50:065203

    Google Scholar 

  54. Solonenko O (2004) Mathematical modelling of transformer discharge thermal plasma torches and technologies. Cambridge University Press

    Google Scholar 

  55. Hinada M, Inatani Y, Yamada T, Hiraki K (1996) An arc-heated high enthalpy test facility for thermal protection studies. Inst Space Astronaut Sci Rep 664:1

    Google Scholar 

  56. Horn D, Bruce, Iii W, Felderman E (1996) Results and predictions for the new H3 arc heater at AEDC. In: 27th plasma dynamics and lasers conference. https://doi.org/10.2514/6.1996-2316

  57. Bruce, Iii W, Horn D, Felderman E, Davis L (1994) Arc heater development at AEDC. In: 25th plasmadynamics and lasers conference. https://doi.org/10.2514/6.1994-2591

  58. Arnold Engineering Development Center (2003) AEDC brochure, high-enthalpy arc-heated test facilities

  59. Viguier P, Garraud J, Soutade J, Defoort S, Ferrier M, Steelant J (2015) Test of the Lapcat II small scale flight experiment model in the ONERA F4 wind tunnel. In: 8th aerothermodynamics symposium

  60. Viguier P, Garraud J, Soutade J, Serre L, Defoort S, Ferrier M, Ristori A (2012) Development of f4 hotshot windtunnel for high enthalpy scramjet tests. In: 18th AIAA/3AF international space planes and hypersonic systems and technologies conference. https://doi.org/10.2514/6.2012-5970

  61. Ferrier M, Defoort S, Viguier P, Garraud J, Soutade J (2014) Scramjet powered vehicle tests in the ONERA F4 hotshot wind tunnel. Comparison to numerical simulations. In: 19th AIAA international space planes and hypersonic systems and technologies conference. https://doi.org/10.2514/6.2014-2218

  62. Abdo Y, Rohani V, Fulcheri L (2017) An optimal method for the computation of the parameter Rs of the net emission coefficient approximation approach for determining the electrical and thermal characteristics of plasma arcs. J Phys D Appl Phys 50:445202

    Google Scholar 

  63. Murphy AB, Tam E (2014) Thermodynamic properties and transport coefficients of arc lamp plasmas: argon, krypton and xenon. J Phys D Appl Phys 47:295202

    Google Scholar 

  64. Cressault Y, Hannachi R, Teulet P, Gleizes A, Gonnet J-P, Battandier J-Y (2008) Influence of metallic vapours on the properties of air thermal plasmas. Plasma Sources Sci Technol 17:035016

    Google Scholar 

  65. Lowke JJ (1974) Predictions of arc temperature profiles using approximate emission coefficients for radiation losses. J Quant Spectrosc Radiat Transf 14:111–122

    CAS  Google Scholar 

  66. Liebermann RW, Lowke JJ (1976) Radiation emission coefficients for sulfur hexafluoride arc plasmas. J Quant Spectrosc Radiat Transf 16:253–264

    CAS  Google Scholar 

  67. Lowke JJ (1969) A relaxation method of calculating arc temperature profiles applied to discharges in sodium vapor. J Quant Spectrosc Radiat Transf 9:839–854

    CAS  Google Scholar 

  68. Trelles JP (2013) Computational study of flow dynamics from a dc arc plasma jet. J Phys D Appl Phys 46:255201

    Google Scholar 

  69. Mougenot J, Gonzalez J-J, Freton P, Masquère M (2013) Plasma–weld pool interaction in tungsten inert-gas configuration. J Phys D Appl Phys 46:135206

    Google Scholar 

  70. Trelles JP (2018) Advances and challenges in computational fluid dynamics of atmospheric pressure plasmas. Plasma Sources Sci Technol 27:093001

    Google Scholar 

  71. Jan C, Cressault Y, Gleizes A, Bousoltane K (2014) Calculation of radiative properties of SF6–C2F4 thermal plasmas—application to radiative transfer in high-voltage circuit breakers modelling. J Phys D Appl Phys 47:015204

    CAS  Google Scholar 

  72. Lee TH (1969) Plasma physics and the interruption of an electric circuit. Proc IEEE 57:307–323

    Google Scholar 

  73. Finkelnburg A, Peters T (1957) Kontinuierliche spektren. Springer

    Google Scholar 

  74. Peyrou B, Chemartin L, Lalande P, Chéron BG, Rivière P, Perrin M-Y, Soufiani A (2012) Radiative properties and radiative transfer in high pressure thermal air plasmas. J Phys D Appl Phys 45:455203

    Google Scholar 

  75. Maecker H (1955) Plasmastromungen in Lichtbogen infolge eigenmagnetischer Kompression. Z Physik 141:198–216

    Google Scholar 

  76. Maecker H (2009) The electric arc—the physics of stationary gas discharges near thermal equilibrium. H. Popp Matlab GmbH

  77. Maecker HH, Stablein HG (1986) What keeps an arc standing in a cross flow? IEEE Trans Plasma Sci 14:291–299

    Google Scholar 

  78. Ravary B, Fulcheri L, Bakken JA, Flamant G, Fabry F (1999) Influence of the electromagnetic forces on momentum and heat transfer in a 3-Phase AC plasma reactor. Plasma Chem Plasma Process 19:69–89

    CAS  Google Scholar 

  79. Larsen HL (1996) AC electric arc models for a laboratory set-up and a silicon metal furnace. Department of Metallurgy, The Norwegian University of Science and Technology, Trondheim Norway

  80. Schmidt H-P, Speckhofer G (1996) Experimental and theoretical investigation of high-pressure arcs-part i: the cylindrical arc column (two-dimensional modeling). IEEE Trans Plasma Sci 24:1229

    CAS  Google Scholar 

  81. Heberlein J (1999) Electrode phenomena in plasma torches. Ann N Y Acad Sci 891:14–27

    CAS  Google Scholar 

  82. Cobine JD, Burger EE (1955) Analysis of electrode phenomena in the high-current arc. J Appl Phys 26:895–900

    CAS  Google Scholar 

  83. Guile AE (1971) Arc-electrode phenomena. Proc Inst Electr Eng 118:1131

    CAS  Google Scholar 

  84. Mosley K, Guile AE, Dring D (1972) Some aspects of electrode erosion in arc heaters. J Electrochem Soc 119:1316

    CAS  Google Scholar 

  85. Daalder JE (1975) Erosion and the origin of charged and neutral species in vacuum arcs. J Phys D Appl Phys 8:1647–1659

    CAS  Google Scholar 

  86. Hackmann J, Bebber H (1992) Electrode erosion in high power thermal arcs. Pure Appl Chem 64:653–656

    CAS  Google Scholar 

  87. Smith JL, Pfender E (1976) Determination of local anode heat fluxes in high intensity, thermal arcs. IEEE Trans Power Appar Syst 95:704–710

    Google Scholar 

  88. Prock J (1986) Time-dependent description of cathode crater formation in vacuum arcs. IEEE Trans Plasma Sci 14:482–491

    Google Scholar 

  89. Juttner B (1981) Formation time and heating mechanism of arc cathode craters in vacuum. J Phys D Appl Phys 14:1265

    Google Scholar 

  90. Gueye P, Cressault Y, Rohani V, Fulcheri L (2019) MHD modeling of rotating arc under restrike mode in ‘Kvaerner-type’ torch: part I. Dynamics at 1 bar pressure. J Phys D Appl Phys 52:135202

    Google Scholar 

  91. Gueye P, Cressault Y, Rohani V, Fulcheri L (2019) MHD modeling of rotating arc under restrike mode in ‘Kvaerner-type’ torch: II. Dynamics and stability at 20 bar pressure. J Phys D Appl Phys 52:145202

    Google Scholar 

  92. Szente RN, Munz RJ, Drouet MG (1987) The effect of low concentrations of a polyatomic gas in argon on erosion on copper cathodes in a magnetically rotated arc. Plasma Chem Plasma Process 7:349–364

    CAS  Google Scholar 

  93. Szente RN, Munz RJ, Drouet MG (1992) Electrode erosion in plasma torches. Plasma Chem Plasma Process 12:327–343

    CAS  Google Scholar 

  94. Barcza N (1987) Application of plasma technology to steel processing. Iron and Steel Society, AIME, Plasma Technology in Metallurgical Processing, pp 131–148

  95. Zhukov MF (1994) Linear direct current plasma torches, investigations and design of thermal plasma generators. Cambridge Interscience

  96. Benilov MS, Benilova LG (2013) Field to thermo-field to thermionic electron emission: a practical guide to evaluation and electron emission from arc cathodes. J Appl Phys 114:063307

    Google Scholar 

  97. Benilov MS (2008) Understanding and modelling plasma–electrode interaction in high-pressure arc discharges: a review. J Phys D Appl Phys 41:144001

    Google Scholar 

  98. Benilov MS, Coulombe S (2001) Modeling a collision-dominated space-charge sheath in high-pressure arc discharges. Phys Plasmas 8:4227–4233

    CAS  Google Scholar 

  99. Benilov MS (2020) Modeling the physics of interaction of high-pressure arcs with their electrodes: advances and challenges. J Phys D Appl Phys 53:013002

    CAS  Google Scholar 

  100. Almeida NA, Cunha MD, Benilov MS (2017) Computing anode heating voltage in high-pressure arc discharges and modelling rod electrodes in dc and ac regimes. J Phys D Appl Phys 50:385203

    Google Scholar 

  101. Gorlani C, Zavanella L (1993) Continuous simulation and industrial processes: electrode consumption in arc furnaces. Int J Prod Res 31:1873–1889

    Google Scholar 

  102. Restrepo E, García LA, Castro JJ, Devia A (2005) Craters formation in a graphite cathode produced by pulsed arc at low pressure. Appl Surf Sci 252:1276–1282

    CAS  Google Scholar 

  103. Zavaleyev V, Walkowicz J, Moszyński D (2016) Investigation of carbon cathode surface before and after the passage of combined DC vacuum arc with superimposed high-current arc pulses. Вопросы атомной науки и техники 4:76–83

    Google Scholar 

  104. Pan Z, Chen X, Yuan X, Wang C, Xia W (2021) The effects of graphite particles on arc plasma characteristics. Plasma Chem Plasma Process 41:1183–1203

    CAS  Google Scholar 

Download references

Funding

This review is part of a Ph.D. work conducted at Mines Paris, and funded by Monolith Materials.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and idea: LF; literature search: primarily JD, secondarily LF, ED, VR, EW; data analysis: JD, LF, ED, VR, EW; first draft: JD; revisions: LF, ED, VR, EW.

Corresponding author

Correspondence to Laurent Fulcheri.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diab, J., Dames, E., Rohani, V. et al. Review of DC and AC Arc Plasma at High Pressures Above Atmospheric Pressure. Plasma Chem Plasma Process 44, 687–720 (2024). https://doi.org/10.1007/s11090-024-10457-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-024-10457-9

Keywords

Navigation