Skip to main content
Log in

Effect of Applied Voltage on Localized Deposition of Silicon Dioxide-like Films on Stainless Steel Using Atmospheric Pressure Microplasma Jet

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Atmospheric pressure plasma jet (APPJ) is a promising method for thin film deposition. In this work, an argon/oxygen/hexamethyldisiloxane APPJ is utilized to deposit SiO2-like thin film on a stainless steel surface, and then the optical, electrical, thermal, and particle properties of this APPJ are investigated by adjusting the applied voltage. Moreover, the surface morphology, thickness, roughness, element composition, and water contact angle properties of the deposited thin films are also studied. The results show that there are two filaments discharge states of the APPJ by increasing voltage, which are partial filaments discharge (PFD) state at 5.4 kV and uniform filaments discharge (UFD) state at 7.5 kV. The current pulses and plasma gas temperature in the UFD state are higher than in the PFD state. The dissipated power increases from 7.2 to 19.1 W with the applied voltage increases. And OH, O, and Si active particles are monitored in two discharge states of APPJ. Besides, the surface morphology of the deposited thin films is different in the two discharge states and the film thickness is 1.21 ± 0.19 μm and 1.55 ± 0.35 μm respectively. The XPS results show that the film is a SiO2-like film in which the Si/O ratio is 2.80 and 2.76 and contains three kinds of Si–O bonds and a high concentration of carbon (47% and 53%). Finally, the SiO2-like films deposited on the surface of stainless steel at two discharge states are hydrophobic and the water contact angles are 76.8° ± 5° and 90.3° ± 3° respectively. This work is helpful in the deposition of high-quality silicon-containing films on conductive substrates by APPJ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

The datasets used and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Adress W, Graham WG (2022) Comparison study of two atmospheric pressure plasma jet configurations for plasma-catalyst development. Plasma Chemistry and Plasma Processing. 42(6):1329–1344

    Article  CAS  Google Scholar 

  2. Wang T, Wang J, Wang S, Chen S, Wang X, Yang W, Li M, Shi L (2022) Atmospheric micro-sized cold plasma jet created by a long and ultra-flexible generator with sputtered gold thin film electrode. Journal of Micromechanics and Microengineering 32(9):95006

    Article  Google Scholar 

  3. Kostov KG, Nishime TMC, Castro AHR, Toth A, Hein LRO (2014) Surface modification of polymeric materials by cold atmospheric plasma jet. Applied Surface Science 314:367–375

    Article  CAS  Google Scholar 

  4. Dufay M, Jimenez M, Degoutin S (2020) Effect of cold plasma treatment on electrospun nanofibers properties: a review. ACS Applied Bio Materials 3(8):4696–4716

    Article  CAS  PubMed  Google Scholar 

  5. Wang T, Wang J, Wang S, Wang X, Yang W, Li M, Shi L (2022) Influence of ring electrodes covered with dielectric layer on the characteristics of atmospheric pressure plasma jet and its interaction with polymer surface. Applied Surface Science 585:152681

    Article  CAS  Google Scholar 

  6. Schutze A, Jeong JY, Babayan SE, Park J, Selwyn GS, Hicks RF (1998) The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Transactions on Plasma Science 26(6):1685–1694

    Article  CAS  Google Scholar 

  7. Fang Z, Hao L, Yang H, Xie X, Qiu Y, Edmund K (2009) Polytetrafluoroethylene surface modification by filamentary and homogeneous dielectric barrier discharges in air. Applied Surface Science 255(16):7279–7285

    Article  CAS  Google Scholar 

  8. Kong F, Zhang P, Yu W, Zhang C, Liu J, Ren C, Shao T (2020) Enhanced surface insulating performance for polystyrene by atmospheric pressure plasma jet deposition. Applied Surface Science 527:146826

    Article  CAS  Google Scholar 

  9. Ma W, Lin C, Huang C (2015) Deposition of fluorine-containing thin film by atmospheric pressure plasma jet and film surface structural transition. Plasma Processes and Polymers 12(4):362–371

    Article  CAS  Google Scholar 

  10. Stallard CP, Iqbal MM, Turner MM, Dowling DP (2013) Investigation of the formation mechanism of aligned nano-structured siloxane coatings deposited using an atmospheric plasma jet. Plasma Processes and Polymers 10(10):888–903

    Article  CAS  Google Scholar 

  11. Hozumi A, Wu Y, Hayashi K, Sugimura H, Takai O, Yokogawa Y, Kameyama T (2003) Micro-wear resistance of ultrathin silicon oxide film-covered polymer substrate. Surface Science 532:1056–1060

    Article  Google Scholar 

  12. Baruwa AD, Akinlabi ET, Oladijo OP, Maledi N, Chinn J (2018) Effect of [Tris(trimethylsiloxy)silyethyl]dimethylchlorosilane on the corrosion protection enhancement of hydrophobic film coated on AISI 304. Materials Research Express 6(1):16427

    Article  Google Scholar 

  13. Lin G, Jiang Y, Kao P, Chiu I, Wu Y, Hsu C, Cheng I, Chen J (2015) Nitrogen atmospheric-pressure-plasma-jet induced oxidation of SnOx thin films. Plasma Processes and Polymers. 35(6):979–991

    Article  CAS  Google Scholar 

  14. Hsu C, Li H, Lien S, Chen J, Cheng I, Hsu C (2015) Deposition of ZnO thin films by an atmospheric pressure plasma jet-assisted process: the selection of precursors. IEEE Transactions on Plasma Science 43(2):670–674

    Article  CAS  Google Scholar 

  15. Wang T, Wang J, Wang S, Lv L, Li M, Shi L (2021) Effect of metal mesh addition on polymer surface etching by an atmospheric pressure plasma jet. Applied Surface Science 570:151258

    Article  CAS  Google Scholar 

  16. Teodorescu M, Bazavan M, Ionita ER, Dinescu G (2015) Characteristics of a long and stable filamentary argon plasma jet generated in ambient atmosphere. Plasma Sources Science and Technology 24(2):25033–25038

    Article  Google Scholar 

  17. Soysal D, Ansar A (2013) A new approach to understand liquid injection into atmospheric plasma jets. Surface and Coatings Technology 220:187–190

    Article  CAS  Google Scholar 

  18. Hsu CM, Lien ST, Yang YJ, Chen JZ, Cheng IC, Hsu CC (2014) Deposition of transparent and conductive ZnO films by an atmospheric pressure plasma-jet-assisted process. Thin Solid Films 570:423–428

    Article  CAS  Google Scholar 

  19. Lommatzsch U, Ihde J (2009) Plasma polymerization of HMDSO with an atmospheric pressure plasma jet for corrosion protection of aluminum and low-adhesion surfaces. Plasma Process Polymer 6(10):642–648

    Article  CAS  Google Scholar 

  20. Zeng J, Lin J, Zhang X (2013) Deposition of silicon oxide films by non-equilibrium, atmospheric-pressure plasma jet. Surface and Coatings Technology 228:S416–S418

    Article  CAS  Google Scholar 

  21. Santos AL, Botelho EC, Kostov KG, Nascente PAP, Da Silva LLG (2013) Atmospheric plasma treatment of carbon fibers for enhancement of their adhesion properties. IEEE Transactions on Plasma Science 41(2):319–324

    Article  CAS  Google Scholar 

  22. Kuchakova I, Ionita MD, Ionita E, Lazea-Stoyanova A, Brajnicov S, Mitu B, Dinescu G, De Vrieze M, Cvelbar U, Zille A, Leys C, Yu Nikiforov A (2020) Atmospheric pressure plasma deposition of organosilicon thin films by direct current and radio-frequency plasma jets. Materials 13(6):1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mui TSM, Silva LLG, Prysiazhnyi V, Kostov KG (2017) Surface modification of aluminium alloys by atmospheric pressure plasma treatments for enhancement of their adhesion properties. Surface and Coatings Technology 312:32–36

    Article  CAS  Google Scholar 

  24. Thakur A, Kumar A, Kaya S, Marzouki R, Zhang F, Guo L (2022) Recent advancements in surface modification, characterization and functionalization for enhancing the biocompatibility and corrosion resistance of biomedical implants. Coatings 12(10):1459

    Article  CAS  Google Scholar 

  25. Lin L, Chen S, Wu C, Hung J, Ou K (2011) Microstructure and antibacterial properties of microwave plasma nitrided layers on biomedical stainless steels. Appl Surf Sci 257(17):7375–7380

    Article  CAS  Google Scholar 

  26. Nascimento F, Petroski K, Kostov K (2021) Effects of O2 addition on the discharge parameters and production of reactive species of a transferred atmospheric pressure plasma jet. Applied Sciences 11(14):6311

    Article  CAS  Google Scholar 

  27. Ricci M, Dorier J, Hollenstein C, Fayet P (2010) Influence of argon and nitrogen admixture in HMDSO/O2 plasmas onto powder formation. Plasma Process Polymer 8:108–117

    Google Scholar 

  28. Baghery Borooj M, Mousavi Shoushtari A, Nosratian Sabet E, Haji A (2016) Influence of oxygen plasma treatment parameters on the properties of carbon fiber. Journal of Adhesion Science and Technology 30(21):2372–2382

    Article  CAS  Google Scholar 

  29. Fang Z, Shao T, Yang J, Zhang C (2016) Discharge processes and an electrical model of atmospheric pressure plasma jets in argon. The European Physical Journal D 70(1):8

    Article  Google Scholar 

  30. Nikiforov AY, Sarani A, Leys C (2011) The influence of water vapor content on electrical and spectral properties of an atmospheric pressure plasma jet. Plasma Sources Science and Technology 20(1):15014

    Article  Google Scholar 

  31. Kriegseis J, Möller B, Grundmann S, Tropea C (2011) Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators. JEE Electrostatics 69(4):302–312

    Article  Google Scholar 

  32. Biganzoli I, Barni R, Gurioli A, Pertile R, Riccardi C (2014) Experimental investigation of Lissajous figure shapes in planar and surface dielectric barrier discharges. Journal of Physics: Conference Series 550(1):12010–12039

    Google Scholar 

  33. Qayyum A, Zeb S, Naveed MA, Rehman NU, Ghauri SA, Zakaullah M (2007) Optical emission spectroscopy of Ar–N2 mixture plasma. Journal of Quantitative Spectroscopy and Radiative Transfer 107(3):361–371

    Article  CAS  Google Scholar 

  34. Sysolyatina E, Mukhachev A, Yurova M, Grushin M, Karalnik V, Petryakov A, Trushkin N, Ermolaeva S, Akishev Y (2014) Role of the charged particles in bacteria inactivation by plasma of a positive and negative corona in ambient air. Plasma Process and Polymer 11(4):315–334

    Article  CAS  Google Scholar 

  35. Luan P, Knoll AJ, Wang H, Kondeti VSSK, Bruggeman PJ, Oehrlein GS (2016) Model polymer etching and surface modification by a time modulated RF plasma jet: role of atomic oxygen and water vapor. Journal of Physics D Applied physics 50(3):3

    Google Scholar 

  36. Yonemori S, Ono R (2014) Flux of OH and O radicals onto a surface by an atmospheric-pressure helium plasma jet measured by laser-induced fluorescence. Journal of Physics D Applied Physics 47(12):1–10

    Article  Google Scholar 

  37. Ribeiro RP, Rangel RDCC, Fernandes FO, Cruz NC, Rangel EC (2021) Effect of plasma oxidation treatment on production of a SiOx/SiOxCyHz bilayer to protect carbon steel against corrosion. Materials Research (São Carlos, São Paulo, Brazil) 24(suppl 1):1

    Google Scholar 

  38. Wang R, Cui C, Zhang C, Ren C, Chen G, Shao T (2018) Deposition of SiOx film on electrode surface by DBD to improve the lift-off voltage of metal particles. IEEE Transactions on Dielectrics and Electrical Insulation 25(4):1285–1292

    Article  CAS  Google Scholar 

  39. Wavhal DS, Zhang J, Steen ML, Fisher ER (2006) Investigation of gas phase species and deposition of SiO2 films from HMDSO/O2 Plasmas. Plasma Process Polym 3(3):276–287

    Article  CAS  Google Scholar 

  40. Wang R, Li W, Zhang C, Ren C, Ostrikov KK, Shao T (2017) Thin insulating film deposition on copper by atmospheric-pressure plasmas. Plasma Process and Polymers 14(7):1600248

    Article  Google Scholar 

  41. Ji Y, Hong Y, Lee S, Kim S, Kim S (2008) Formation of super-hydrophobic and water-repellency surface with hexamethyldisiloxane (HMDSO) coating on polyethyleneteraphtalate fiber by atmosperic pressure plasma polymerization. Surface Coating Technology 202(22–23):5663–5667

    Article  CAS  Google Scholar 

  42. Kubiak KJ, Wilson MCT, Mathia TG, Carval P (2011) Wettability versus roughness of engineering surfaces. Wear 271(3–4):523–528

    Article  CAS  Google Scholar 

  43. Grundner M, Jacob H (1986) Investigations on hydrophilic and hydrophobic silicon (100) wafer surfaces by x-ray photoelectron and high-resolution electron energy loss-spectroscopy. Applied Physics Solid Surface 39(2):73–82

    Article  Google Scholar 

Download references

Funding

This work is supported by the Fund of the National Natural Science Foundation of China (51905002), Anhui Provincial Natural Science Foundation (2008085QE230, 2108085ME174, 2108085QE228), Open Project of China International Science and Technology Cooperation Base on Intelligent Equipment Manufacturing in Special Service Environment (ISTC2022KF06), Open Project of the Key Laboratory of Green Fabrication and Surface Technology of Advanced Metal Materials (GFST2021KF06), Open Project of Anhui Province Engineering Laboratory of Intelligent Demolition Equipment (APELIDE2021B001), Graduate Student Scientific Research Project in Anhui Province (YJS20210345), and Postgraduate Academic Innova tion Project of Anhui Province (2022xscx068).

Author information

Authors and Affiliations

Authors

Contributions

JH: wrote the main manuscript text. TW: project administration. XW: visualization. WZ: validation. ZT: methodology. ML: resources. LP: conceptualization. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Tao Wang.

Ethics declarations

Conflict of Interest

We declare that we have no competing interests with a financial or personal nature in this work.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, T., Wang, X. et al. Effect of Applied Voltage on Localized Deposition of Silicon Dioxide-like Films on Stainless Steel Using Atmospheric Pressure Microplasma Jet. Plasma Chem Plasma Process 43, 879–899 (2023). https://doi.org/10.1007/s11090-023-10332-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-023-10332-z

Keywords

Navigation