Skip to main content
Log in

Influence of Duty Cycle on Ozone Generation and Discharge Using Volume Dielectric Barrier Discharge

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

The influence of duty cycle on ozone generation and discharge characteristics was investigated experimentally using volume dielectric barrier discharge in both synthetic air and pure oxygen at atmospheric pressure. The discharge was driven by an amplitude-modulated AC high voltage–power supply producing TON (a single AC cycle) and TOFF periods with a widely variable duty cycle. The experimental results show that the energy delivered to the discharge during each AC cycle remains roughly constant and is independent of feed gas, duty cycle and TOFF. Both average discharge power and ozone concentration show an initial linear increase with duty cycle, and deviate gradually from linearity owing to an increase in gas temperature at higher duty cycles. Nevertheless, ozone yield remains nearly constant (45.7 ± 3.5 g/kWh in synthetic air and 94.7 ± 3.1 g/kWh in pure oxygen) over a wide range of applied duty cycles (0.02–1). This property can be conveniently employed to develop a unique ozone generator with a widely adjustable ozone concentration and simultaneously a constant ozone yield. Additionally, the discharges in synthetic air and pure oxygen have similar electrical characteristics; however, there are observable differences in apparent luminosity, which is weak and white-toned for synthetic air discharge, and bright and blue-toned for pure oxygen discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hakiai K, Ihara S, Satoh S, Yamabe C (1999) Electr Eng Jpn 127(2):8–13

    Article  Google Scholar 

  2. Samaranayake WJW, Miyahara Y, Namihira T, Katsuki S, Sakugawa T, Hackam R, Akiyama H (2000) IEEE Trans Dielectr Electr Insul 7(2):254–260

    Article  CAS  Google Scholar 

  3. Samaranayake WJW, Miyahara Y, Namihira T, Katsuki S, Hackam R, Akiyama H (2000) IEEE Trans Dielectr Electr Insul 7(6):849–854

    Article  CAS  Google Scholar 

  4. Simek M, Clupek M (2002) J Phys D Appl Phys 35(11):1171–1175

    Article  CAS  Google Scholar 

  5. Ma HB, Qiu YC (2003) Ozone Sci Eng 25:127–135

    Article  CAS  Google Scholar 

  6. Ahn HS, Hayashi N, Ihara S, Yamabe C (2003) Jpn J Appl Phys 42:6578–6583

    Article  CAS  Google Scholar 

  7. Kaneda S, Hayashi N, Ihara S (2004) Vacuum 73:567–571

    Article  CAS  Google Scholar 

  8. Song HJ, Chun BJ, Lee KS (2004) J Korean Phys Soc 44(5):1182–1188

    CAS  Google Scholar 

  9. Ono R, Oda T (2007) J Appl Phys Appl Phys 40:176–182

    Article  CAS  Google Scholar 

  10. Fukawa F, Shimomura N, Yano T, Yamanaka S, Teranishi K, Akiyama H (2008) IEEE Trans Plasma Sci 36(5):2592–2597

    Article  CAS  Google Scholar 

  11. Wang DY, Matsumoto T, Namihira T, Akiyama H (2010) J Adv Oxid Technol 13(1):71–78

    CAS  Google Scholar 

  12. Simek M, Pekarek S, Prukner V (2010) Plasma Chem Plasma Process 30:607–617

    Article  CAS  Google Scholar 

  13. Simek M, Pekarek S, Prukner V (2012) Plasma Chem Plasma Process 32:743–754

    Article  CAS  Google Scholar 

  14. Sung TL, Teii S, Liu CM, Hsiao RC, Chen PC, Wu YH, Yang CK, Teii K, Ono S, Ebihara K (2013) Vacuum 90:65–69

    Article  CAS  Google Scholar 

  15. Malik MA, Hughes D (2016) J Phys D Appl Phys 49(13):135202

    Article  Google Scholar 

  16. Simek M, Ambrico PF, Prukner V (2013) J Phys D Appl Phys 46:485205

    Article  Google Scholar 

  17. Simek M, Ambrico PF, Prukner V (2015) J Phys D Appl Phys 48:265202

    Article  Google Scholar 

  18. Wagner HE, Brandenburg R, Kozlov KV, Sonnenfeld A, Michel P, Behnke JF (2003) Vacuum 71:417–436

    Article  CAS  Google Scholar 

  19. Simek M (2002) J Phys D Appl Phys 35(16):1967–1980

    Article  CAS  Google Scholar 

  20. Simek M (2014) J Phys D Appl Phys 47(46):463001

    Article  Google Scholar 

  21. Wei LS, Xu M, Zhang YF (2017) Ozone Sci Eng 39(1):33–43

    Article  CAS  Google Scholar 

  22. Benyamina M, Belasri A, Khodja K (2014) Ozone Sci Eng 36(3):253–263

    Article  CAS  Google Scholar 

  23. Yehia A (2012) Phys Plasmas 19(2):023503

    Article  Google Scholar 

  24. Lee HM, Chang MB, Wei TC (2004) Ozone Sci Eng 26(6):551–562

    Article  CAS  Google Scholar 

  25. Mennad B, Harrache Z, Aid DA, Belasri A (2010) Curr Appl Phys 10(6):1391–1401

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation (GA15-04023S), National Natural Science Foundation of China (51711530316, 51611530548) and the Science and Technology Pillar Program of Jiangxi Province, China (20151BBG70007). L. S. Wei would like to thank the NSFC-CAS agreement for funding his stay at IPP Prague.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, L.S., Pongrac, B., Zhang, Y.F. et al. Influence of Duty Cycle on Ozone Generation and Discharge Using Volume Dielectric Barrier Discharge. Plasma Chem Plasma Process 38, 355–364 (2018). https://doi.org/10.1007/s11090-017-9866-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-017-9866-y

Keywords

Navigation