Skip to main content
Log in

Temperature-and airflow-related effects of ozone production by surface dielectric barrier discharge in air

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Discharge ozone production depends on different quantities and the effect of one quantity on this process cannot be separated from the effects of other quantities. Thus the temperature influences the reaction rates of individual reactions involved in ozone generation and destruction, the thermodynamic properties, and the density of the feeding gas. The density of the feeding gas influences the reduced electric field, which affects ionization of the gas, production of electrons and consequently the electrical parameters of the discharge. Taking into account these considerations we investigated the effect of temperature and various arrangements of the input and output of the feeding gas to and from the discharge chamber together with related changes of electrical parameters of the surface dielectric barrier discharge on its ozone production for the temperatures in which commercial ozone generators function. We found that if the temperature of air at the output from the discharge chamber is increased from 15.0 ± 0.5 to 25.0 ± 0.5 °C, the discharge ozone production and peak discharge voltage decrease. Both the discharge ozone production and the peak discharge voltage are also affected by the way in which the feeding air is supplied to and leaves the discharge chamber. We also showed that for all ways in which the feeding air is supplied to and leaves the discharge chamber the discharge nitrogen dioxide production follows the same trends as discharge ozone production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Kogelschatz, B. Eliason, M. Hirth, Ozone Sci. Eng. 10, 367 (1998)

    Article  Google Scholar 

  2. S. Yagi, M. Tanaka, J. Phys. D 12, 1509 (1979)

    Article  ADS  Google Scholar 

  3. U. Kogelschatz, B. Eliason, W. Egli, J. Phys. IV France 07, C4–47 (1997)

    Article  Google Scholar 

  4. H.Y. Kim, S.K. Kang, H.C. Kwon, H.W. Lee, J.K. Lee, Plasma Process. Polym. 10, 686 (2013)

    Article  Google Scholar 

  5. J. Chen, J.H. Davidson, Plasma Chem. Plasma Process. 22, 495 (2002)

    Article  Google Scholar 

  6. V.I. Gibalov, G.J. Pietsch, J. Phys. D 33, 2618 (2000)

    Article  ADS  Google Scholar 

  7. Y. Nakai, A. Takashi, N. Osawa, Y. Yoshioka, R. Hanaoka, J. Chem. Chem. Eng. 5, 1107 (2011)

    Google Scholar 

  8. M. Takayama, K. Ebihara, H. Stryczewska, T. Ikegami, Y. Gyoutoku, K. Kubo, M. Tachibana, Thin Solid Films 506, 396 (2006)

    Article  ADS  Google Scholar 

  9. A. Kossyi, A.Y. Kostinsky, A.A. Matvejev, V.P. Silakov, Plasma Sources Sci. Technol. 1, 207 (1992)

    Article  ADS  Google Scholar 

  10. F.J. Gordillo-Vazques, J. Phys. D 41, 234016 (2008)

    Article  ADS  Google Scholar 

  11. S. Pekárek, J. Rosenkranz, Ozone Sci. Eng. 24, 221 (2002)

    Article  Google Scholar 

  12. S. Pekźrek, Eur. Phys. J. D 61, 657 (2011)

    Article  ADS  Google Scholar 

  13. N. Jidenko, E. Bourgeois, J.P. Borra, J. Phys. D 43, 295203 (2010)

    Article  Google Scholar 

  14. S. Jodzis, Eur. Phys. J. Appl. Phys. 61, 24319 (2013)

    Article  ADS  Google Scholar 

  15. V.I. Gibalov, G.J. Pietsch, Plasma Sources Sci. Technol. 21, 024010 (2012)

    Article  ADS  Google Scholar 

  16. E. Bourgeois, N. Jidenko, M. Alonso, J.-P. Borra, J. Phys. D 42, 205202 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislav Pekárek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pekárek, S., Mikeš, J. Temperature-and airflow-related effects of ozone production by surface dielectric barrier discharge in air. Eur. Phys. J. D 68, 310 (2014). https://doi.org/10.1140/epjd/e2014-50393-x

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-50393-x

Keywords

Navigation