Skip to main content

Advertisement

Log in

Low Cost Compact Nanosecond Pulsed Plasma System for Environmental and Biomedical Applications

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Nanosecond pulsed non-thermal atmospheric-pressure plasmas are promising for numerous applications including air and water purification, ozone synthesis, surface sterilization, material processing, and biomedical care. However, the high cost of the nanosecond pulsed power sources has hindered adaptation of the plasma-based technologies for clinical and industrial use. This paper presents a low cost (<100US$) nanosecond pulsed plasma system that consists of a Cockcroft–Walton high voltage charging circuit, a compact nanosecond pulse generator using a spark gap as switch, and a plasma reactor. The nanosecond pulse power source requires only a 12 V DC input, hence is battery operable. Through the optimization of the experimental parameters, pulses with a peak voltage >10 kV, a 3 ns rise time (10 to 90 %), and a 10 ns pulse duration (full width at half maximum) at a pulse repetition rate of up to 500 Hz were achieved in the present study. It has been successfully tested to power three different plasma reactors to form pulsed corona discharges, dielectric barrier discharges, and sliding discharges. The energy efficiency of such a nanosecond pulsed sliding discharge system was assessed in the context of ozone synthesis using air or oxygen as the feed gas, and was found comparable to a previously reported non-thermal plasma system that used commercial high voltage pulsed power sources. This study demonstrated that this low-cost nanosecond pulsed power source can prove to be an energy efficient and simple supply to drive various non-thermal atmospheric-pressure plasma reactors for environmental, medical and other applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Akiyama H, Sakugawa T, Namihira T, Takaki K, Minamitani Y, Shimomura N (2007) Industrial applications of pulsed power technology. IEEE Trans Dielectr Electr Insul 14(5):1051–1064

    Article  CAS  Google Scholar 

  2. Kogelschatz U (2004) Atmospheric-pressure plasma technology. Plasma Phys Controll Fusion 46(12B):B63

    Article  CAS  Google Scholar 

  3. Malik MA, Malik SA (1999) Pulsed corona discharges and their applications in toxic VOCs abatement. Chin J Chem Eng 7(4):351–362

    CAS  Google Scholar 

  4. Vandenbroucke AM, Morent R, De Geyter N, Leys C (2011) Non-thermal plasmas for non-catalytic and catalytic VOC abatement. J Hazard Mater 195:30–54

    Article  CAS  Google Scholar 

  5. Preis S, Klauson D, Gregor A (2013) Potential of electric discharge plasma methods in abatement of volatile organic compounds originating from the food industry. J Environ Manag 114:125–138

    Article  CAS  Google Scholar 

  6. Beckers FJCM, Hoeben WFLM, Huiskamp T, Pemen AJM, van Heesch EJM (2013) Pulsed corona demonstrator for semi-industrial scale air purification. IEEE Trans Plasma Sci 41(10):2920–2925

    Article  CAS  Google Scholar 

  7. Mizuno A (2013) Generation of non-thermal plasma combined with catalysts and their application in environmental technology. Catal Today 211:2–8

    Article  CAS  Google Scholar 

  8. Hołub M, Brandenburg R, Grosch H, Weinmann S, Hansel B (2014) Plasma supported odour removal from waste air in water treatment plants: an industrial case study. Aerosol Air Qual Res 14(3):697–707

    Google Scholar 

  9. Thevenet F, Sivachandiran L, Guaitella O, Barakat C, Rousseau A (2014) Plasma–catalyst coupling for volatile organic compound removal and indoor air treatment: a review. J Phys D Appl Phys 47(22):224011

    Article  Google Scholar 

  10. Masuda S, Hosokawa S, Tu X, Wang Z (1995) Novel plasma chemical technologies—PPCP and SPCP for control of gaseous pollutants and air toxics. J Electrostat 34(4):415–438

    Article  CAS  Google Scholar 

  11. Penetrante BM, Brusasco RM, Merritt BT, Vogtlin GE (1999) Environmental applications of low-temperature plasmas. Pure Appl Chem 71(10):1829–1835

    Article  CAS  Google Scholar 

  12. Hammer T (2014) Atmospheric pressure plasma application for pollution control in industrial processes. Contrib Plasma Phys 54(2):187–201

    Article  CAS  Google Scholar 

  13. Talebizadeh P, Babaie M, Brown R, Rahimzadeh H, Ristovski Z, Arai M (2014) The role of non-thermal plasma technique in NOx treatment: a review. Renew Sustain Energ Rev 40:886–901

    Article  CAS  Google Scholar 

  14. Kelly-Wintenberg K, Sherman DM, Tsai PY, Gadri RB, Karakaya F, Chen Z, Roth JR, Montie TC (2000) Air filter sterilization using a one atmosphere uniform glow discharge plasma (the volfilter). IEEE Trans Plasma Sci 28(1):64–71

    Article  Google Scholar 

  15. Park CW, Byeon JH, Yoon KY, Park JH, Hwang J (2011) Simultaneous removal of odors, airborne particles, and bioaerosols in a municipal composting facility by dielectric barrier discharge. Sep Purif Technol 77(1):87–93

    Article  CAS  Google Scholar 

  16. Wu Y, Liang Y, Wei K, Li W, Yao M, Zhang J (2014) Rapid allergen inactivation using atmospheric pressure cold plasma. Environ Sci Technol 48(5):2901–2909

    Article  CAS  Google Scholar 

  17. Zhou P, Yang Y, Lai AC, Huang G (2016) Inactivation of airborne bacteria by cold plasma in air duct flow. Build Environ

  18. Malik MA, Ghaffar A, Malik SA (2001) Water purification by electrical discharges. Plasma Sources Sci Technol 10(1):82

    Article  CAS  Google Scholar 

  19. Locke BR, Sato M, Sunka P, Hoffmann MR, Chang JS (2006) Electrohydraulic discharge and nonthermal plasma for water treatment. Ind Eng Chem Res 45(3):882–905

    Article  CAS  Google Scholar 

  20. Malik MA (2010) Water purification by plasmas: which reactors are most energy efficient? Plasma Chem Plasma Process 30(1):21–31

    Article  CAS  Google Scholar 

  21. Banaschik R, Burchhardt G, Zocher K, Hammerschmidt S, Kolb JF, Weltmann KD (2016) Comparison of pulsed corona plasma and pulsed electric fields for the decontamination of water containing Legionella pneumophila as model organism. Bioelectrochemistry. doi:10.1016/j.bioelechem.2016.05.006

    Google Scholar 

  22. Wojtowicz JA (2005) Ozone. Kirk-Othmer Encycl Chem Technol. doi:10.1002/0471238961.1526151423151020.a01.pub2

    Google Scholar 

  23. Jodzis S, Patkowski W (2016) Kinetic and energetic analysis of the ozone synthesis process in oxygen-fed DBD reactor. Effect of power density, gap volume and residence time. Ozone Sci Eng 38(2):86–99

    Article  CAS  Google Scholar 

  24. Malik MA, Hughes D (2016) Ozone synthesis improves by increasing number density of plasma channels and lower voltage in a nonthermal plasma. J Phys D Appl Phys 49(13):135202

    Article  Google Scholar 

  25. Vasilets VN, Shekhter AB (2012) Nitric oxide plasma sources for bio-decontamination and plasma therapy. In: Plasma for bio-decontamination, medicine and food security, Springer Netherlands, pp 393–402

  26. Suschek CV, Opländer C (2016) The application of cold atmospheric plasma in medicine: the potential role of nitric oxide in plasma-induced effects. Clin Plasma Med 4(1):1–8

    Article  Google Scholar 

  27. Edelblute CM, Malik MA, Heller LC (2016) Antibacterial efficacy of a novel plasma reactor without an applied gas flow against methicillin resistant Staphylococcus aureus on diverse surfaces. Bioelectrochemistry. doi:10.1016/j.bioelechem.2016.04.001

    Google Scholar 

  28. Sakai S, Matsuda M, Wang D, Namihira T, Akiyama H, Okamoto K, Toda K (2009) Nitric oxide generator based on pulsed arc discharge. Acta Phys Polonica-Series Gen Phys 115(6):1104

    CAS  Google Scholar 

  29. Yu B, Muenster S, Blaesi AH, Bloch DB, Zapol WM (2015) Producing nitric oxide by pulsed electrical discharge in air for portable inhalation therapy. Sci Transl Med 7(294):294ra107

    Article  Google Scholar 

  30. Malik MA (2016) Nitric oxide production by high voltage electrical discharges for medical uses: a review. Plasma Chem Plasma Process 36(3):737–766

    Article  CAS  Google Scholar 

  31. Schoenbach KH, Nuccitelli R, Beebe SJ (2006) Zap [extreme voltage for fighting diseases]. IEEE Spectr 43(8):20–26

    Article  Google Scholar 

  32. Connolly RJ, Hoff AM, Gilbert R, Jaroszeski MJ (2015) Optimization of a plasma facilitated DNA delivery method. Bioelectrochemistry 103:15–21

    Article  CAS  Google Scholar 

  33. Edelblute CM, Heller LC, Malik MA, Bulysheva A, Heller R (2016) Plasma-activated air mediates plasmid DNA delivery in vivo. Mol Ther Methods Clin Dev 3:16028

    Article  Google Scholar 

  34. Williamson JM, Trump DD, Bletzinger P, Ganguly BN (2006) Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge. J Phys D Appl Phys 39(20):4400–4406

    Article  CAS  Google Scholar 

  35. Zhang X, Lee BJ, Im HG, Cha MS (2016) Ozone production with dielectric barrier discharge: effects of power source and humidity. IEEE Trans Plasma Sci, in press

  36. Rosocha LA (2005) Nonthermal plasma applications to the environment: gaseous electronics and power conditioning. IEEE Trans Plasma Sci 33(1):129–137

    Article  CAS  Google Scholar 

  37. Chiper AS, Blin-Simiand N, Heninger M, Mestdagh H, Boissel P, Jorand F, Lemaire J, Leprovost J, Pasquiers S, Popa G, Postel C (2010) Detailed characterization of 2-heptanone conversion by dielectric barrier discharge in N2 and N2/O2 mixtures. J Phys Chem A 114(1):397–407

    Article  CAS  Google Scholar 

  38. Spaan M, Leistikow J, Schulz-Von Der Gathen V, Döbele HF (2000) Dielectric barrier discharges with steep voltage rise: laser absorption spectroscopy of NO concentrations and temperatures. Plasma Sources Sci Technol 9(2):146

    Article  CAS  Google Scholar 

  39. Puchkarev V, Gundersen M (1997) Energy efficient plasma processing of gaseous emission using a short pulse discharge. Appl Phys Lett 71(23):3364–3366

    Article  CAS  Google Scholar 

  40. Jiang C, Lane J, Song S, Pendelton SJ, Wu Y, Sozer E, Kuthi A, Gundersen MA (2016) Single-electrode He microplasma Jets driven by nanosecond voltage pulses. J Appl Phys 119(9):083301. doi:10.1063/1.4942624

    Article  Google Scholar 

  41. Namihira T, Tsukamoto S, Wang D, Katsuki S, Hackam R, Akiyama H, Uchida Y, Koike M (2000) Improvement of NOx removal efficiency using short-width pulsed power. IEEE Trans Plasma Sci 28(2):434–442

    Article  CAS  Google Scholar 

  42. Matsumoto T, Wang D, Namihira T, Akiyama H (2011) Process performances of 2 ns pulsed discharge plasma. Jpn J Appl Phys 50(8S1):08JF14

    Article  Google Scholar 

  43. Namihira T, Wang D, Akiyama H (2009) Pulsed power technology for pollution control. Acta Phys Pol A 115(6):953–955

    Article  CAS  Google Scholar 

  44. Carman RJ, Mildren RP, Ward BK, Kane DM (2004) High-pressure (>1 bar) dielectric barrier discharge lamps generating short pulses of high-peak power vacuum ultraviolet radiation. J Phys D Appl Phys 37(17):2399

    Article  CAS  Google Scholar 

  45. Jiang WH, Yatsui K, Takayama K, Akemoto M, Nakamura E, Shimizu N, Tokuchi A, Rukin S, Tarasenko V, Panchenko A (2004) Compact solid-state switched pulsed power and its applications. Proc IEEE 92:1180–1196

    Article  CAS  Google Scholar 

  46. Kuffel E, Zaengl W, Kuffel J (2000) High voltage engineering: fundamentals, 2nd ed, Newnes, Woburn, MA 13–21, ISBN 0 7506 3634 3

  47. Greinacher H (1921) Über eine Methode, Wechselstrom mittels elektrischer Ventile und Kondensatoren in hochgespannten Gleichstrom umzuwandeln. Zeitschrift für Physik 4(2):195–205

    Article  Google Scholar 

  48. Cockcroft JD, Walton ETS (1930) Experiments with high velocity positive ions. In: Proceedings of the royal society of London. Series A, containing papers of a mathematical and physical character, 477–489

  49. Young CM, Chen MH, Chang TA, Ko CC, Jen KK (2013) Cascade Cockcroft–Walton voltage multiplier applied to transformerless high step-up DC–DC converter. IEEE Trans Ind Electron 60(2):523–537

    Article  Google Scholar 

  50. Potturi VR, Malik MA, Schoenbach KH Jiang C (2014) Low cost, multi-kilohertz pulse generator for non-equilibrium plasma-based air purification. In: Power modulator and high voltage conference (IPMHVC), 2014 IEEE international IEEE 49–52

  51. Müller L, Kimball JW (2016) High gain DC–DC converter based on the Cockcroft–Walton multiplier. IEEE Trans Power Electron 31(9):6405–6415

    Article  Google Scholar 

  52. Katzir L, Shmilovitz D (2016) A split-source multisection high-voltage power supply for x-ray. IEEE J Emerg Sel Top Power Electron 4(2):373–381

    Article  Google Scholar 

  53. Janda M, Machala Z, Niklová A, Martišovitš V (2012) The streamer-to-spark transition in a transient spark: a dc-driven nanosecond-pulsed discharge in atmospheric air. Plasma Sour Sci Technol 21(4):045006

    Article  Google Scholar 

  54. Malik MA, Hughes D, Heller R, Schoenbach KH (2015) Surface plasmas versus volume plasma: energy deposition and ozone generation in air and oxygen. Plasma Chem Plasma Process 35(4):697–704

    Article  CAS  Google Scholar 

  55. Malik MA, Schoenbach KH, Heller R (2014) Coupled surface dielectric barrier discharge reactor-ozone synthesis and nitric oxide conversion from air. Chem Eng J 256:222–229

    Article  CAS  Google Scholar 

  56. Abdel-Salam M, Anis H, El-Morshedy A, Radwan R (2000) High voltage engineering—theory and practice, (2nd ed) Marcel Dekker Inc., New York, pp 531–535, ISBN# 0-8247-0402-9

  57. Kogelschatz U, Eliasson B, Hirth M (1988) Ozone generation from oxygen and air: discharge physics and reaction mechanisms. Ozone Sci Eng 10:367–378

    Article  CAS  Google Scholar 

  58. Jodzis S (2011) Application of technical kinetics for macroscopic analysis of ozone synthesis process. Ind Eng Chem Res 50:6053–6060

    Article  CAS  Google Scholar 

  59. Kogelschatz U, Baesaler P (1987) Determination of nitrous oxide and dinitrogen pentoxide concentrations in the output of air-fed ozone generators of high power density. Ozone Sci Eng 9:195–206

    Article  CAS  Google Scholar 

  60. Yehia A (2012) Assessment of ozone generation in dry air fed silent discharge reactors. Phys Plasmas 19:023503

    Article  Google Scholar 

  61. Jodzis S (2012) Effective ozone generation in oxygen using a mesh electrode in an ozonizer with variable linear velocity. Ozone Sci Eng 34:378–386

    Article  CAS  Google Scholar 

  62. Jodzis S (2013) Temperature effects under ozone synthesis process conditions. Eur Phys J Appl Phys 61:24319

    Article  Google Scholar 

  63. Malik MA (2014) Ozone synthesis using shielded sliding discharge: effect of oxygen content and positive versus negative streamer mode. Ind Eng Chem Res 53(31):12305–12311

    Article  CAS  Google Scholar 

  64. Samaranayake WJM, Miyahara Y, Namihira T, Katsuki S, Sakugawa T, Hackam R, Akiyama H (2000) Pulsed streamer discharge characteristics of ozone production in dry air. IEEE Trans Dielectr Electr Insul 7:254–260

    Article  CAS  Google Scholar 

  65. Simek M, Clupek M (2002) Efficiency of ozone production by pulsed positive corona discharge in synthetic air. J Phys D Appl Phys 35:1171–1175

    Article  CAS  Google Scholar 

  66. Ikemoto T, Ninomiya T, Morimoto M, Teranishi K, Shimomura N (2015) Investigation of electrode structure for dense ozone production using nanosecond pulsed powers. In: IEEE pulsed power conference (PPC) 1–4 DOI:10.1109/PPC.2015.7296874

  67. Pekarek S (2012) Experimental study of surface dielectric barrier discharge in air and its ozone production. J Phys D Appl Phys 45:075201

    Article  Google Scholar 

  68. Simek M, Pekarek S, Prukner V (2012) Ozone production using a power modulated surface dielectric barrier discharge in dry synthetic air. Plasma Chem Plasma Process 32:743–754

    Article  CAS  Google Scholar 

  69. Yao S, Wu Z, Han J, Tang X, Jiang B, Lu H, Yamamoto S, Kodama S (2015) Study of ozone generation in an atmospheric dielectric barrier discharge reactor. J Electrost 75:35–42

    Article  CAS  Google Scholar 

  70. Buntat Z, Smith IR, Razali NA (2009) Ozone generation using atmospheric pressure glow discharge in air. J Phys D Appl Phys 42:235202

    Article  Google Scholar 

  71. Kim MH, Cho JH, Ban SB, Choi RY, Kwon EJ, Park SJ, Eden JG (2013) Efficient generation of ozone in arrays of microchannel plasmas. J Phys D Appl Phys 46:305201

    Article  Google Scholar 

  72. Simek M, Pekarek S, Prukner V (2010) Influence of power modulation on ozone production using an AC surface dielectric barrier discharge in oxygen. Plasma Chem Plasma Process 30:607–617

    Article  CAS  Google Scholar 

  73. Takamura N, Matsumoto T, Wang D, Namihira T, Akiyama H (2011) Ozone generation using positive-and negative-nanoseconds pulsed discharges. In: IEEE pulsed power conference (PPC), 1300−1303

  74. Huang W, Ren T, Xia W (2007) Ozone generation by hybrid discharge combined with catalysis. Ozone Sci Eng 2:107–112

    Article  Google Scholar 

  75. Chen HL, Lee HM, Chang MB (2006) Enhancement of energy yield for ozone production via packed-bed reactors. Ozone Sci Eng 28:111–118

    Article  CAS  Google Scholar 

  76. Jodzis S (2003) Effect of silica packing on ozone synthesis from oxygen–nitrogen mixtures. Ozone Sci Eng 25:63–72

    Article  CAS  Google Scholar 

  77. Pekárek S (2015) Effect of TiO2 and reverse air supply on ozone production of negative corona discharge with the needle in the dielectric tube to mesh electrode system. Plasma Chem Plasma Process 35(4):705–719

    Article  Google Scholar 

  78. Pekárek S, Mikeš J, Pelikánová IB, Krčma F, Dzik P (2016) Effect of TiO2 on various regions of active electrode on surface dielectric barrier discharge in air. Plasma Chem Plasma Process. doi:10.1007/s11090-016-9723-4

    Google Scholar 

  79. Pekárek S, Mikeš J, Krýsa J (2015) Comparative study of TiO 2 and ZnO photocatalysts for the enhancement of ozone generation by surface dielectric barrier discharge in air. Appl Catal A Gen 502:122–128

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Arif Malik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, M.A., Schoenbach, K.H., Abdel-Fattah, T.M. et al. Low Cost Compact Nanosecond Pulsed Plasma System for Environmental and Biomedical Applications. Plasma Chem Plasma Process 37, 59–76 (2017). https://doi.org/10.1007/s11090-016-9747-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9747-9

Keywords

Navigation