Skip to main content
Log in

Formation of Nanosized Low-Concentrated Cobalt-Containing Catalytic Dispersions for Three-Phase Fischer–Tropsch Synthesis During the Process of Hydrogen Activation

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Topochemical transformations occurring during the reduction of low-concentrated catalytic dispersions used for Fischer–Tropsch synthesis in a three-phase slurry reactor are investigated. As evidenced by dynamic light scattering and transmission electron microscopy, catalyst systems containing nanoparticles with sizes of 91 and 3 nm, respectively, are formed in systems containing cobalt at concentrations of 5 and 1 wt %. After catalyst activation via the reduction of cobalt-containing particles by hydrogen, the size of the dispersed phase is 2–3 nm regardless of the content of cobalt in the suspension. The study of magnetic properties of suspension samples in situ indicates that metallic cobalt is formed during the process of catalyst activation, as confirmed by X-ray powder diffraction analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. N. E. Tsakoumis, M. Ronning, O. Borg, E. Rytter, and A. Holmen, Catal. Today 154 (3–4), 162 (2010).

    Article  CAS  Google Scholar 

  2. Y. Sun, Zh. Jia, G. Yang, L. Zhang, and Zh. Sun, Int. J. Hydrogen Energy 42, 29 222 (2017).

    Article  CAS  Google Scholar 

  3. A. O. Odunsi, T. S. O' Donovan, and D. A. Reay, Appl. Therm. Eng. 93, 1377 (2016).

    Article  CAS  Google Scholar 

  4. D. Selvatico, A. Lanzini, and M. Santarelli, Fuel 186, 544 (2016).

    Article  CAS  Google Scholar 

  5. S. N. Khadzhiev, A. S. Lyadov, M. V. Krylova, and A. Yu. Krylova, Pet. Chem. 51 (1), 24 (2011).

    Article  CAS  Google Scholar 

  6. S. N. Khadzhiev, Pet. Chem. 56 (6), 465 (2016).

    Article  CAS  Google Scholar 

  7. V. B. Tsvetkov, M. V. Kulikova, and S. N. Khadzhiev, Pet. Chem. 57 (7), 600 (2017).

    Article  CAS  Google Scholar 

  8. W. Chen, T. Lin, Y. Dai, Y. An, F. Yu, L. Zhong, Sh. Li, and Y. Sun, Catal. Today 311, 8 (2018).

    Article  CAS  Google Scholar 

  9. G. N. Bondarenko, M. V. Kulikova, A. Kh. Al’ Khazradzhi, O. S. Dement’eva, M. I. Ivantsov, and M. V. Chudakova, Pet. Chem. 56 (12), 1128 (2016).

    Article  CAS  Google Scholar 

  10. M. V. Kulikova, M. V. Chudakova, O. S. Dement’eva, M. I. Ivantsov, and N. V. Oknina, Pet. Chem. 56 (6), 535 (2016).

    Article  CAS  Google Scholar 

  11. P. A. Chernavskii, Kinet. Katal. 46 (5), 674 (2005).

    Article  CAS  Google Scholar 

  12. E. Patanou, N. E. Tsakoumis, R. Myrstad, and E. A. Blekkan, Appl. Catal., A 549, 280 (2018).

  13. M. Rahmati, B. Huang, Jr. M. Mortensen, K. Keyvanloo, Th. Fletcher, B. Woodfield, W. Hecker, and M. Argyle, J. Catal. 359, 92 (2018).

    Article  CAS  Google Scholar 

  14. J.-X. Liu, P. Wang, W. Xu, and E. J. M. Hensen, Engineering 3, 467 (2017).

    Article  Google Scholar 

  15. L. M. Chew, W. Xia, H. Dudder, Ph. Weide, H. Ruland, and M. Muhler, Catal. Today 270, 85 (2016).

    Article  CAS  Google Scholar 

  16. M. V. Kulikova, O. S. Dement’eva, S. O. Ilyin, and S. N. Khadzhiev, Pet. Chem. 75 (14), 1318 (2017).

    Article  Google Scholar 

  17. P. A. Chernavskii, B. S. Lunin, R. A. Zakharyan, G. V. Pankina, and N. S. Perov, Prib. Tekh. Eksp. 57 (1), 119 (2014).

    Google Scholar 

  18. P. A. Chernavskii, G. V. Pankina, and V. V. Lunin, Rus. Chem. Rev. 80 (6), 579 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by Federal Agency for Scientific Organization of Russia within the scope of State Task for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

The work was performed using the equipment of the Center for Collective Use New Petrochemical Processes, Polymer Composites, and Adhesives.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Kulikova.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikova, M.V., Dement’eva, O.S., Ivantsev, M.I. et al. Formation of Nanosized Low-Concentrated Cobalt-Containing Catalytic Dispersions for Three-Phase Fischer–Tropsch Synthesis During the Process of Hydrogen Activation. Pet. Chem. 58, 1233–1236 (2018). https://doi.org/10.1134/S0965544118140074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544118140074

Keywords:

Navigation