Skip to main content
Log in

Low Temperature Diesel Particulate Filter Regeneration by Atmospheric Air Non-thermal Plasma Injection System

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

An experimental study of the regeneration of diesel particulate filter (DPF) was conducted through the use of a self-designed Non-thermal plasma (NTP) injection system with an experimental temperature of 20–300 °C, with atmospheric air being used as the gas source. The results revealed that the PM could be broken down into CO and CO2 by NTP, through a discharge reaction of the NTP reactor. As the temperature increases, the mass of C1 (mass of C in CO) showed an overall declining trend. Interestingly, the mass of C2 (mass of C in CO2) and C12 (the sum of C1 and C2) both showed an initial increase, followed by a decrease. The peak mass of C12 appears at 150 °C, and both axial and radial temperature gradients are less than the limit of DPF temperature gradient at this temperature. In conclusion, DPF can be regenerated by the NTP technology at a lower temperature, which can aid in the avoidance of thermal damage of DPF. The technology boasts a great advantage in adopting atmospheric air as its gas source, which can not only reduce costs, but also is convenient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ravindraa K, Sokhia R, Van Grieken R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921

    Article  Google Scholar 

  2. Tan PQ, Hu ZY, Deng KY, Lu JX, Lou DM, Wan G (2007) Particulate matter emission modelling based on soot and SOF from direct injection diesel engines. Energy Convers Manag 48(2):510–518

    Article  CAS  Google Scholar 

  3. Agarwal AK, Gupta T, Shukla PC, Dhar A (2015) Particulate emissions from biodiesel fuelled CI engines. Energy Conver Manag 94:311–330

    Article  CAS  Google Scholar 

  4. Mokhria MA, Abdullaha NR, Abdullaha SA, Kasalonga S, Mamatb R (2012) Soot filtration recent simulation analysis in diesel particulate filter (DPF). Proc Eng 41:1750–1755

    Article  Google Scholar 

  5. Feng X, Ge Y, Ma C, Tan J, Linxiao Yu, Li J, Wang X (2014) Experimental study on the nitrogen dioxide and particulate matter emissions from diesel engine retrofitted with particulate oxidation catalyst. Sci Total Environ 472:56–62

    Article  CAS  Google Scholar 

  6. Palma V, Ciambelli P, Meloni E, Sin A (2013) Study of the catalyst load for a microwave susceptible catalytic DPF. Catal Today 216:185–193

    Article  CAS  Google Scholar 

  7. Chen P, Wang J (2014) Air-fraction modeling for simultaneous diesel engine NOx and PM emissions control during active DPF regenerations. Appl Energy 122:310–320

    Article  CAS  Google Scholar 

  8. Bensaid S, Marchisio DL, Fino D, Saracco G, Specchia V (2009) Modelling of diesel particulate filtration in wall-flow traps. Chem Eng J 154:211–218

    Article  CAS  Google Scholar 

  9. Beatrice C, Di Iorio S, Guido C, Napolitano P (2012) Detailed characterization of particulate emissions of an automotive catalyzed DPF using actual regeneration strategies. Exp Thermal Fluid Sci 39:45–53

    Article  CAS  Google Scholar 

  10. Chen K, Martirosyan KS, Luss D (2010) Temperature excursions during soot combustion in a diesel particulate filter. Ind Eng Chem Res 49:10358–10363

    Article  CAS  Google Scholar 

  11. Palmaa V, Ciambellia P, Melonia E, Sinb A (2015) Catalytic DPF microwave assisted active regeneration. Fuel 140:50–61

    Article  Google Scholar 

  12. Chen P, Ibrahim U, Wang J (2014) Experimental investigation of diesel and biodiesel post injections during active diesel particulate filter regenerations. Fuel 130:286–295

    Article  CAS  Google Scholar 

  13. Chen K, Martirosyan KS, Luss D (2011) Temperature gradients within a soot layer during regeneration. Chem Eng Sci 66:2968–2973

    Article  CAS  Google Scholar 

  14. Song J, Wang J, Boehman AL (2006) The role of fuel-borne catalyst in diesel particulate oxidation behavior. Combust Flame 146:73–84

    Article  CAS  Google Scholar 

  15. Okubo M, Kuroki T, Kawasaki S et al (2010) Single-stage simultaneous reduction of diesel particulate and NOx using oxygen-lean nonthermal plasma application. IEEE Trans Ind Appl 46:2143–2150

    Article  CAS  Google Scholar 

  16. Yamamoto K, Sakai T (2015) Simulation of continuously regenerating trap with catalyzed DPF. Catal Today 242:357–362

    Article  CAS  Google Scholar 

  17. Kurokia T, Fujishimab H, Otsukac K, Itoa T, Okuboa M, Yamamotod T, Yoshidab K (2008) Continuous operation of commercial-scale plasma–chemical aftertreatment system of smoke tube boiler emission with oxidation reduction potential and pH control. Thin Solid Films 516(19):6704–6709

    Article  Google Scholar 

  18. Kuwahara T, Kuroki T, Yoshida K, Saeki N, Okubo M (2012) Development of sterilization device using air nonthermal plasma jet induced by atmospheric pressure corona discharge. Thin Solid Films 523:2–5

    Article  CAS  Google Scholar 

  19. Sivachandirana L, Theveneta F, Rousseaub A (2015) Isopropanol removal using MnXOY packed bed non-thermal plasma reactor: comparison between continuous treatment and sequential sorption/regeneration. Chem Eng J 270(15):327–335

    Article  Google Scholar 

  20. Reddy EL, Bijua VM, Subrahmanyam C (2012) Production of hydrogen and sulfur from hydrogen sulfide assisted by nonthermal plasma. Appl Energy 95:87–92

    Article  Google Scholar 

  21. Kameda T, Inazu K, Hisamatsu Y, Takenaka N, Bandow H (2006) Isomer distribution of nitrotriphenylenes in airborne particles, diesel exhaust particles, and the productsof gas-phase radical-initiated nitration of triphenylene. Atmos Environ 40(40):7742–7751

    Article  CAS  Google Scholar 

  22. Chae JO (2003) Non-thermal plasma for diesel exhaust treatment. J Electrostat 57(3–4):251–262

    Article  CAS  Google Scholar 

  23. Michael J, Odic E, Zinola S, Lavy J (2012) Plasma assisted heterogeneous catalytic oxidation: HCCI diesel engine investigations. Appl Catal B 117–118:1–9

    Google Scholar 

  24. Chen YY, Cai YX, Li XH, Shi YX, Zheng Y (2015) Experimental study on regenerating fouled EGR cooler by NTPI technology. Int J Automot Technol 16(2):183–191

    Article  Google Scholar 

  25. Babaiea M, Davaric P, Talebizadehd P, Zaree F, Rahimzadehd H, Ristovskia Z, Browna R (2015) Performance evaluation of non-thermal plasma on particulate matter, ozone and CO2 correlation for diesel exhaust emission reduction. Chem Eng J 276:240–248

    Article  Google Scholar 

  26. Okubo M, Kuroki T, Yamamoto T, Miwa S (2003) Soot incineration of diesel particulate filter using honeycomb nonthermal plasma. SAE paper 2003-01-1886

  27. Okubo M, Miyashita T, Kuroki T, Miwa S, Yamamoto T (2004) Regeneration of diesel particulate filter using nonthermal plasma without catalyst. IEEE Trans Ind Appl 40(6):1451–1458

    Article  CAS  Google Scholar 

  28. Okubo M, Kuroki T, Miyairi Y, Yamamoto T (2004) Low-temperature soot incineration of diesel particulate filter using remote nonthermal plasma induced by a pulsed barrier discharge. IEEE Trans Ind Appl 40(6):1504–1512

    Article  CAS  Google Scholar 

  29. Okubo M, Arita N, Kuroki T et al (2007) Carbon particulate matter incineration in diesel engine emissions using indirect nonthermal plasma processing. Thin Solid Films 515(9):4289–4295

    Article  CAS  Google Scholar 

  30. Okubo M, Arita N, Kuroki T, Yoshida K, Yamamoto T (2008) Total diesel emission control technology using ozone injection and plasma desorption. Plasma Chem Plasma Process 28(2):173–187

    Article  CAS  Google Scholar 

  31. Okubo M, Kuwahara T, Kanaka Y, Kuroki T (2010) Improvement of NOx reduction efficiency in diesel emission using nonthermal plasma—exhaust gas recirculation combined aftertreatment. IEEE Ind Appl Soc Ann Meet. doi:10.1109/IAS.2010.5615918

    Google Scholar 

  32. Fushimi C, Madokoro K, Yao S, Fujioka Y, Yamada K (2008) Influence of polarity and rise time of pulse voltage waveforms on diesel particulate matter removal using an uneven dielectric barrier discharge reactor. Plasma Chem Plasma Process 28:511–522

    Article  CAS  Google Scholar 

  33. Shuiliang YAO, Kodama A, Yamamoto S, Mine C, Fujioka Y, Fushimi C (2008) Application of a dielectric barrier discharge reactor for diesel PM removal. 11th international conference on electrostatic precipitation 677–680

  34. Shi Y, Cai Y, Li X, Chen Y, Ding D, Tang W (2014) Meachnism and method of DPF regeneration by oxygen radical generaed by NTP technology. Int J Automot Technol 15:871–876

    Article  Google Scholar 

  35. Eliasson B, Kogelschatz U (1991) Nonequilibrium volume plasma chemical processing. IEEE Trans Plasma Sci 19(6):1063–1077

    Article  CAS  Google Scholar 

  36. Takaki K, Chang JS, Kostov KG (2004) Atmospheric pressure of nitrogen plasmas in a ferro-electric packed bed barrier discharge reactor. IEEE Trans Dielectr Electr Insul 11:481–490

    Article  CAS  Google Scholar 

  37. Talebizadeh P, Babaie M, Brown R, Rahimzadeh H, Ristovski Z, Arai M (2014) The role of non-thermal plasma technique in NOx treatment: a review. Renew Sustain Energy Rev 40:886–901

    Article  CAS  Google Scholar 

  38. Grundmann SM, Zahn RJ (2005) Treatment of soot by dielectric barrier discharges and ozone. Plasma Chem Plasma Process 25(5):455–466

    Article  CAS  Google Scholar 

  39. Debora F, Vito S (2008) Open issues in oxidative catalysis for diesel particulate abatement. Powder Technol 180:64–73

    Article  Google Scholar 

  40. Kuwahara T, Nishii S, Kuroki T, Okubo M (2013) Complete regeneration characteristics of diesel particulate filter using ozone injection. Appl Energy 111:652–656

    Article  CAS  Google Scholar 

  41. Murtagh MJ, Sherwood DL, Socha LS et al (1994) Development of a diesel particulate filter composition and its effect on thermal durability and filtration performance. SAE Technical Paper, 940235

Download references

Acknowledgments

This work is currently supported by the National Natural Science Foundation of China (No. 51176067), the Priority Academic Program Development of Jiangsu Higher Education Institutions ([2011]No.6), and the Graduate Students Scientific Research Innovation Project of Jiangsu Ordinary University (KYLX15_1070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunxi Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Cai, Y., Li, X. et al. Low Temperature Diesel Particulate Filter Regeneration by Atmospheric Air Non-thermal Plasma Injection System. Plasma Chem Plasma Process 36, 783–797 (2016). https://doi.org/10.1007/s11090-016-9701-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-016-9701-x

Keywords

Navigation