Skip to main content
Log in

Oxidized Derivatives of n-Hexane from a Water/Argon Continuous Flow Electrical Discharge Plasma Reactor

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

A non-thermal continuous flow plasma reactor with a liquid water stream and argon carrier gas is shown to convert n-hexane and water into alcohols, alkenes, ketones, hydroperoxides, alpha-hydroxy-ketones and diketones. Fragmented (short chain) primary alcohols, fragmented aldehydes and fragmented carboxylic acids are also formed. The variation of the supply voltage and oxygen concentration allows moderate fine-tuning of yield and selectivity of this organic “diversity-oriented” synthetic process. A (pH based) procedure for rapid separation of the organic hydroperoxides has been developed. Computationally determined thermodynamic and kinetic parameters of several reaction pathways support their feasibility. The construction of a mechanistic pathway map was accomplished, providing deeper insight into this radical and plasma based transformation process.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Fridman A (2008) Plasma chemistry. Cambridge University Press, Cambridge

    Book  Google Scholar 

  2. Suhr H (1971) Organic reactions in the plasma of glow discharges. Angew Chem Int Ed Engl 10(6):422. doi:10.1002/anie.197104221

    Article  Google Scholar 

  3. Wertheimer MR (2014) Plasma processing and polymers: a personal perspective. Plasma Chem Plasma Process 34(3):363–376. doi:10.1007/s11090-013-9491-3

    Article  CAS  Google Scholar 

  4. Kogelschatz U (1988) Advanced ozone generation. In: Stucki S (ed) Process technologies for water treatment. Plenum Press, New York, pp 87–120

    Chapter  Google Scholar 

  5. Du C, Mo J, Li H (2014) Renewable hydrogen production by alcohols reforming using plasma and plasma-catalytic technologies: challenges and opportunities. Chem Rev. doi:10.1021/cr5003744

    Google Scholar 

  6. Malik MA, Hughes D, Malik A, Xiao S, Schoenbach KH (2013) Study of the production of hydrogen and light hydrocarbons by spark discharges in diesel, kerosene, gasoline, and methane. Plasma Chem Plasma Process 33(1):271–279. doi:10.1007/s11090-012-9429-1

    Article  CAS  Google Scholar 

  7. Burlica R, Shih KY, Hnatiuc B, Locke BR (2011) Hydrogen generation by pulsed gliding arc discharge plasma with sprays of alcohol solutions. Ind Eng Chem Res 50(15):9466–9470. doi:10.1021/ie101920n

    Article  CAS  Google Scholar 

  8. Gallagher MJ, Geiger R, Polevich A, Rabinovich A, Gutsol A, Fridman A (2010) On-board plasma-assisted conversion of heavy hydrocarbons into synthesis gas. Fuel 89(6):1187–1192. doi:10.1016/j.fuel.2009.11.039

    Article  CAS  Google Scholar 

  9. Holladay JD, Hu J, King DL, Wang Y (2009) An overview of hydrogen production technologies. Catal Today 139(4):244–260. doi:10.1016/j.cattod.2008.08.039

    Article  CAS  Google Scholar 

  10. Kim SC, Chun YN (2008) Production of hydrogen by partial oxidation with thermal plasma. Renew Energy 33(7):1564–1569. doi:10.1016/j.renene.2007.09.013

    Article  CAS  Google Scholar 

  11. Petitpas G, Rollier JD, Darmon A, Gonzalez-Aguilar J, Metkemeijer R, Fulcheri L (2007) A comparative study of non-thermal plasma assisted reforming technologies. Int J Hydrogen Energy 32(14):2848–2867. doi:10.1016/j.ijhydene.2007.03.026

    Article  CAS  Google Scholar 

  12. Sarmiento B, Brey JJ, Viera IG, Gonzalez-Elipe AR, Cotrino J, Rico VJ (2007) Hydrogen production by reforming of hydrocarbons and alcohols in a dielectric barrier discharge. J Power Sources 169(1):140–143. doi:10.1016/j.jpowsour.2007.01.059

    Article  CAS  Google Scholar 

  13. Zhu X, Trung H, Lobban LL, Mallinson RG (2014) Partial oxidation of ethanol using a non-equilibrium plasma. Int J Hydrogen Energy 39(17):9047–9056. doi:10.1016/j.ijhydene.2014.03.198

    Article  CAS  Google Scholar 

  14. Wandell RJ, Bresch S, Hsieh K, Alabugin IV, Locke BR (2014) Formation of alcohols and carbonyl compounds from hexane and cyclohexane with water in a liquid film plasma reactor. IEEE Trans Plasma Sci 42(5):1195–1205. doi:10.1109/tps.2014.2304183

    Article  CAS  Google Scholar 

  15. Kudryashov SV, Perevezentsev SA, Ryabov AY, Shchegoleva GS, Sirotkin EE (2012) Study of the products of benzene transformation in the presence of argon, hydrogen, and propane–butane mixture in barrier discharge. Pet Chem 52(1):60–64. doi:10.1134/s0965544112010057

    Article  CAS  Google Scholar 

  16. Kudryashov SV, Ochered’ko AN, Shchegoleva GS, Ryabov AY (2011) Oxidation of propylene with air in barrier discharge in the presence of octane. Russ J Appl Chem 84(8):1404–1407. doi:10.1134/s1070427211080180

    Article  CAS  Google Scholar 

  17. Perevezentsev SA, Kudryashov SV, Boganov SE, Ryabov AY, Shchegoleva GS (2011) Transformations of benzene–argon mixture in barrier discharge. High Energy Chem 45(1):62–65. doi:10.1134/s0018143911010127

    Article  CAS  Google Scholar 

  18. Kudryashov SV, Ryabov AY, Shchegoleva GS, Savinykh VY, Suslov AI (2008) Oxidative conversion of cyclohexane in discharge plasma maintained with different high-voltage power sources. High Energy Chem 42(1):51–55. doi:10.1134/s0018143908010104

    Article  CAS  Google Scholar 

  19. Kudryashov SV, Ryabov AY, Shchegoleva GS, Sirotkina EE, Velichkina LM (2004) Oxidation of hydrocarbons in a bubble plasma reactor. Pet Chem 44(6):438–440

    Google Scholar 

  20. Kudryashov SV, Ryabov AY, Sirotkina EE, Shchegoleva GS (2004) Oxidation of propylene and isobutylene in a reactor with barrier discharge. Russ J Appl Chem 77(11):1904–1906. doi:10.1007/s11167-005-0188-0

    Article  CAS  Google Scholar 

  21. Kudryashov SV, Ryabov AY, Sirotkina EE, Shchegoleva GS (2003) Oxidation of cyclohexene in the presence of alkanes in a barrier discharge plasma. High Energy Chem 37(3):184–186. doi:10.1023/a:1024103420667

    Article  CAS  Google Scholar 

  22. Kudryashov SV, Shchegoleva GS, Ryabov AY, Sirotkina EE (2002) Simulation of the kinetics of cyclohexane oxidation in a barrier discharge reactor. High Energy Chem 36(5):349–353. doi:10.1023/a:1020254818916

    Article  CAS  Google Scholar 

  23. Kudryashov SV, Ryabov AY, Sirotkina EE, Shchegoleva GS (2001) Transformations of n-hexane and cyclohexane by barrier discharge processing in inert gases. High Energy Chem 35(2):120–122. doi:10.1023/a:1004125607204

    Article  CAS  Google Scholar 

  24. Kudryashov SV, Shchegoleva GS, Sirotkina EE, Ryabov AY (2000) Oxidation of hydrocarbons in a barrier discharge reactor. High Energy Chem 34(2):112–115. doi:10.1007/bf02761839

    Article  CAS  Google Scholar 

  25. Locke BR, Lukes P, Brisset JL (2012) Elementary chemical and physical phenomena in electrical discharge plasma in gas–liquid environments and in liquids. In: Parvulescu VI, Magureanu M, Lukes P (eds) Plasma chemistry and catalysis in gases and liquids. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  26. Lukes P, Locke BR, Brisset JL (2012) Aqueous-phase chemistry of electrical discharge plasma in water and in gas-liquid environments. In: Parvulescu VI, Magureanu M, Lukes P (eds) Plasma chemistry and catalysis in gases and liquids. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  27. Locke BR, Shih KY (2011) Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water. Plasma Sources Sci Technol 20(3):15. doi:10.1088/0963-0252/20/3/034006

    Article  Google Scholar 

  28. Hoeben W, Boekhoven W, Beckers F, van Heesch EJM, Pemen AJM (2014) Partial oxidation of methane by pulsed corona discharges. J Phys D-Appl Phys 47(35):10. doi:10.1088/0022-3727/47/35/355202

    Article  CAS  Google Scholar 

  29. Wandell RJ, Locke BR (2014) Low-power pulsed plasma discharge in a water film reactor. IEEE Trans Plasma Sci 42(10):2634–2635. doi:10.1109/tps.2014.2310055

    Article  Google Scholar 

  30. Eisenberg GM (1943) Colorimetric determination of hydrogen peroxide. Ind Eng Chem-Anal Ed 15:327–328. doi:10.1021/i560117a011

    Article  CAS  Google Scholar 

  31. Alabugin IV, Manoharan M, Breiner B, Lewis FD (2003) Control of kinetics and thermodynamics of [1,5]-shifts by aromaticity: a view through the prism of Marcus theory. J Am Chem Soc 125(31):9329–9342. doi:10.1021/ja035729x

    Article  CAS  Google Scholar 

  32. Alabugin IV, Manoharan M (2005) Thermodynamic and strain effects in competition between 5-exo-dig and 6-endo-dig cyclizations of vinyl and aryl radicals. J Am Chem Soc 127(36):12583–12594. doi:10.1021/ja052677y

    Article  CAS  Google Scholar 

  33. Atkinson R (2003) Kinetics of the gas-phase reactions of OH radicals with alkanes and cycloalkanes. Atmos Chem Phys 3:2233–2307

    Article  CAS  Google Scholar 

  34. Pati K, dos Passos Gomes G, Harris T, Hughes A, Phan H, Banerjee T, Hanson K, Alabugin IV (2015) Traceless directing groups in radical cascades: from oligoalkynes to fused helicenes without tethered initiators. J Am Chem Soc 137(3):1165–1180. doi:10.1021/ja510563d

    Article  CAS  Google Scholar 

  35. Alabugin IV, Bresch S, Gomes GdP (2015) Orbital hybridization: a key electronic factor in control of structure and reactivity. J Phys Org Chem 28(2):147–162. doi:10.1002/poc.3382

    Article  CAS  Google Scholar 

  36. Anslyn E, Doughert D (2006) Modern physical organic chemistry. University Science Books, Sausalito

    Google Scholar 

  37. Wang Z, Herbinet O, Cheng Z, Husson B, Fournet R, Qi F, Battin-Leclerc F (2014) Experimental investigation of the low temperature oxidation of the five isomers of hexane. J Phys Chem A 118(30):5573–5594. doi:10.1021/jp503772h

    Article  CAS  Google Scholar 

  38. Mondal S, Gold B, Mohamed RK, Alabugin IV (2014) Design of leaving groups in radical C–C fragmentations: through-bond 2c–3e interactions in self-terminating radical cascades. Chem Eur J 20(28):8664–8669. doi:10.1002/chem.201402843

    Article  CAS  Google Scholar 

  39. Mondal S, Gold B, Mohamed RK, Phan H, Alabugin IV (2014) Rerouting radical cascades: intercepting the homoallyl ring expansion in enyne cyclizations via C–S scission. J Org Chem 79(16):7491–7501. doi:10.1021/jo5012043

    Article  CAS  Google Scholar 

  40. Mohamed RK, Mondal S, Gold B, Evoniuk CJ, Banerjee T, Hanson K, Alabugin IV (2015) Alkenes as alkyne equivalents in radical cascades terminated by fragmentations: overcoming stereoelectronic restrictions on ring expansions for the preparation of expanded polyaromatics. J Am Chem Soc 137(19):6335–6349. doi:10.1021/jacs.5b02373

    Article  CAS  Google Scholar 

  41. Dolan TJ (1993) Electron and ion collisions with water-vapor. J Phys D-Appl Phys 26(1):4–8

    Article  CAS  Google Scholar 

  42. Liu DX, Bruggeman P, Iza F, Rong MZ, Kong MG (2010) Global model of low-temperature atmospheric-pressure He + H2O plasmas. Plasma Sources Sci Technol 19(2):025018. doi:10.1088/0963-0252/19/2/025018

    Article  CAS  Google Scholar 

  43. Atkinson R (1989) Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds. Journal of physical and chemical reference data, Monograph No. 1. American Chemical Society, Washington; American Institute of Physics, for the National Institute of Standards and Technology, New York

  44. Mevel R, Chatelain K, Boettcher PA, Dayma G, Shepherd JE (2014) Low temperature oxidation of n-hexane in a flow reactor. Fuel 126:282–293. doi:10.1016/j.fuel.2014.02.072

    Article  CAS  Google Scholar 

  45. Jungkamp TPW, Smith JN, Seinfeld JH (1997) Atmospheric oxidation mechanism of n-butane: the fate of alkoxy radicals. J Phys Chem A 101(24):4392–4401. doi:10.1021/jp970212r

    Article  CAS  Google Scholar 

  46. Grymonpre D, Finney W, Clark R, Locke B (2004) Hybrid gas–liquid electrical discharge reactors for organic compound degradation. Ind Eng Chem Res 43(9):1975–1989

    Article  CAS  Google Scholar 

  47. Gilmore K, Kopetzki D, Lee JW, Horváth Z, McQuade DT, Seidel-Morgenstern A, Seeberger PH (2014) Continuous synthesis of artemisinin-derived medicines. Chem Commun 50:12652–12655. doi:10.1039/C4CC05098C

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the financial support from the National Science Foundation (CBET 1236225).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Igor Alabugin or Bruce R. Locke.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4889 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bresch, S., Wandell, R., Wang, H. et al. Oxidized Derivatives of n-Hexane from a Water/Argon Continuous Flow Electrical Discharge Plasma Reactor. Plasma Chem Plasma Process 36, 553–584 (2016). https://doi.org/10.1007/s11090-015-9686-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-015-9686-x

Keywords

Navigation