Skip to main content

Advertisement

Log in

Study of the Production of Hydrogen and Light Hydrocarbons by Spark Discharges in Diesel, Kerosene, Gasoline, and Methane

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Reforming liquid fuels into hydrogen and light hydrocarbons is desirable for improving the combustion characteristics of the fuels and the production of reducing agents for applications such as the removal of nitrogen oxides. In this study, diesel, kerosene, gasoline and methane were reformed by spark discharges between needle and plate electrodes at room temperature and atmospheric pressure. The gaseous products from liquid fuels comprised 65–70 % hydrogen and 30–35 % light hydrocarbons having two carbon atoms per molecule (i.e., C2s), or three carbon atoms per molecule (i.e., C3s). The product gases were 90 % hydrogen and 10 % C2s in the case of methane reforming. The energy efficiency for the production of gaseous products was highest in the case of gasoline at 3.8 mol/kWh, followed by kerosene, diesel and methane at 3.2, 3.0, and 2.4 mol/kWh, respectively. These results were found to be comparable to those reported by others for the reforming of pure hydrocarbons by plasmas in liquids. The liquid fuels turned black due to the formation of carbonaceous products, some of which could be filtered out as solid carbon particles, but others remained dissolved and imparted color to the treated liquid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Petitpas G, Rollier JD, Darmon A, Gonzalez-Aguilar J, Metkemeijer R, Fulcheri L (2007) Int J Hydrogen Energy 32:2848–2867

    Article  CAS  Google Scholar 

  2. Horng RF, Wen CS, Liauh CT, Chao Y, Huang CT (2008) Int J Hydrogen Energy 33:7619–7629

    Article  Google Scholar 

  3. Cohn DR, Rabinovich A, Titus CH, Bromberg L (1997) Int J Hydrogen Energy 22(7):715–723

    Article  CAS  Google Scholar 

  4. Nikipelov A, Correale G, Rakitin A, Pancheshnyi S, Popov I, Starikovskii A, Boot M (2011) SAE Technical Paper 2011-24-0088. doi:10.4271/2011-24-0088

  5. Zhdanok SA, Vasilev GM, Vasetskii VA, Khavets AVJ (2005) Eng Phys Thermophy 78(1):179–181

    Google Scholar 

  6. Chao Y, Lee HM, Chen SH, Chang MB (2009) Int J Hydrogen Energy 34:6271–6279

    Article  CAS  Google Scholar 

  7. Kim TS, Song S, Chun KM, Lee SH (2001) Energy 35:2734–2743

    Article  Google Scholar 

  8. Rosocha LA, Kim Y, Anderson GK, Lee JO, Abbate S (2006) IEEE Trans Plasma Sci 34(6):2526–2531

    Article  CAS  Google Scholar 

  9. Rosocha LA, Coates DM, Platts D, Stange S (2004) Phys Plasmas 11(5):2950–2956

    Article  CAS  Google Scholar 

  10. Odeyemi F, Pekker M, Rabinovich A, Fridman AA, Heon M, Mochalin VN, Gogotsi Y (2012) IEEE Trans Plasma Sci 40(5):1362–1370

    Article  CAS  Google Scholar 

  11. Fisher KB, Thagard SM (2012) Plasma Chem Plasma Process 32:919–993

    Article  CAS  Google Scholar 

  12. Nomura S, Putra AEE, Mukasa S, Yamashita H, Toyota H (2011) Appl Phys Express 4:066201

    Article  Google Scholar 

  13. Kroushawi F, Latifi H, Hosseini SH, Peysokhan M, Nikbakht H, Silani Y, Ghomi H (2012) Plasma Chem Plasma Process 32:959–968

    Article  CAS  Google Scholar 

  14. Yan B, Xu P, Li X, Guo C Y, Jin Y, Cheng Y (2012) Plasma Chem Plasma Process 32:1203–1214

    Google Scholar 

  15. Czernichowski A, Czernichowski M, Czernichowski P (2003) 1st Europ. Hydrogen Energ. Conf. (EHEC), Grenoble, France. http://albin.czernichowski.pagesperso-orange.fr/ECP/CP1%2064%20Diesel%20paper.pdf. Accessed 15 Nov 2012

  16. Xing Y, Liu Z, Couttenye RA, Willis WS, Suib SL, Fanson PT, Hirata H, Ibe M (2008) J Catal 253:28–36

    Article  CAS  Google Scholar 

  17. Matsui Y, Kawakami S, Takashima K, Katsura S, Mizuno A (2005) Energy Fuel 19:1561–1565

    Article  CAS  Google Scholar 

  18. Thagard SM, Prieto G, Takashima K, Mizuno A (2012) IEEE Trans Plasma Sci 40(9):2106–2111

    Article  CAS  Google Scholar 

  19. Nomura S, Toyota H, Tawara M, Yamashita H, Matsumoto K (2006) Appl Phys Lett 88:231502

    Article  Google Scholar 

  20. Sekine Y, Furukawa N, Matsukata M, Kikuchi E (2011) J Phys D Appl Phys 44:274004

    Article  Google Scholar 

  21. Gallagher MJ, Geiger R, Polevich A, Rabinovich A, Gutsol A, Fridman A (2010) Fuel 89:1187–1192

    Article  CAS  Google Scholar 

  22. Malik MA, Ahmed MJ (2008) Electrostat 66:574–577

    Article  CAS  Google Scholar 

  23. Rollier JD, Gonzalez-Aguilar J, Petitpas G, Darmon A, Fulcheri L, Metkemeijer R (2008) Energy Fuel 22:556–560

    Article  CAS  Google Scholar 

  24. Zhu X, Hoang T, Lobban LL, Mallinson RGJ (2011) Phys D Appl Phys 44:274002

    Article  Google Scholar 

  25. Jahanmiri A, Rahimpour MR, Shirazi MM, Hooshmand N, Taghvaei H (2012) Chem Eng J 191:416–425

    Article  CAS  Google Scholar 

  26. Rusanov AVD, Babaritskii AI, Baranov IE, Bibikov MB, Deminskii MA, Demkin SA, Zhivotov VK, Konovalov GM, Lysov GV, Moskovskii AS, Potapkin BV, Smirnov RV, Chebankov FN (2004) Dokl Chem 395(2):82–85

    Article  CAS  Google Scholar 

  27. Kuskova NI, Malyushevskaya AP, Petrichenko SV, Yushchishchina AN (2011) Surf Eng Appl Elect 47(5):446–449

    Article  Google Scholar 

  28. Hartvigsen J, Elangovan S, Hollist M, Czernichowski P, Frost L (2011) ECS Trans 35(1):2825–2833

    Article  CAS  Google Scholar 

  29. Lee DH, Lee JO, Kim KT, Song YH, Kim E, Han HS (2011) Int J Hydrogen Energy 36:11718–11726

    Article  CAS  Google Scholar 

  30. Park C, Kim C, Kim K, Lee D, Song Y, Moriyoshi Y (2010) Int J Hydrogen Energy 35:1789–1796

    Article  CAS  Google Scholar 

  31. Cho BK, Lee JH, Crellin CC, Olson KL, Hilden DL, Kim MK, Kim PS, Heo I, Oh SH, Nam IS (2012) Catal Today 191:20–24

    Article  CAS  Google Scholar 

  32. Lebouvier A, Fresnet F, Fabry F, Boch V, Rohani V, Cauneau F, Fulcheri L (2011) Energy Fuel 25:1034–1044

    Article  CAS  Google Scholar 

  33. Huseo J, Rico V, Cotrino J, Jimenes-Mateos JM, Gonzalez-Elipe AR (2009) Environ Sci Technol 43:2557–2562

    Article  Google Scholar 

  34. Messerle VE, Karpenko EI, Ustimenko AB, Lavrichshev OA (2012) Fuel Process Technol. doi:10.1016/j.fuproc.2012.07.001

  35. Xiao S, Kolb JF, Malik MA, Lu X, Laroussi M, Joshi RP, Schamiloglu E, Schoenbach KH (2006) IEEE Trans Plasma Sci 34(5):1653–1661

    Article  CAS  Google Scholar 

  36. Schoenbach KH, Kolb JF, Xiao S, Katsuki S, Minamitani Y, Joshi R (2008) Plasma Sour Sci Technol 17:024010

    Article  Google Scholar 

  37. Lide DR (ed) (2005) CRC Handbook of Chemistry and Physics, Internet Version 2005. http://www.hbcpnetbase.com. CRC Press, Boca Raton

  38. Kuskova NI, Yushchishina AN, Malyushevskaya AP, Tsolin PL, Petrichenko LA, Smalko AA (2010) Surf Eng Appl Elect 46(2):149–153

    Article  Google Scholar 

  39. Yang Y (2002) Ind Eng Chem Res 41:5918–5926

    Article  CAS  Google Scholar 

  40. Nomura S, Toyota H, Mukasa S, Yamashita H, Maehara T, Kawashima AJ (2009) Appl Phys 106:073306

    Article  Google Scholar 

  41. Raizer YP (1991) Gas discharge physics. Springer, Berlin, p 344

    Book  Google Scholar 

  42. Lee DH, Kim KT, Song YH, Kang WS, Jo S (2012) Plasma Chem Plasma Process. doi:10.1007/s11090-012-9407-7

  43. Billaud FG, Baronnet F, Gueret CP (1993) Ind Eng Chem Res 32(8):1549–1554

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the “Frank Reidy Fellowship in Environmental Plasma Research” and with internal funds of the Frank Reidy Research Center for Bioelectrics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Arif Malik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malik, M.A., Hughes, D., Malik, A. et al. Study of the Production of Hydrogen and Light Hydrocarbons by Spark Discharges in Diesel, Kerosene, Gasoline, and Methane. Plasma Chem Plasma Process 33, 271–279 (2013). https://doi.org/10.1007/s11090-012-9429-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-012-9429-1

Keywords

Navigation