Skip to main content
Log in

Development and High-Temperature Corrosion Performance of MCrAl(Y) Coatings Prepared by Electrochemical Deposition: A Brief Review

  • Review
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

Owing to good physical compatibility with high-temperature metallic structural materials, Cr2O3- or Al2O3-forming MCrAlY coatings have been extensively used to protect hot section components in aerospace and other fields from high-temperature corrosion. Currently, MCrAlY coatings are normally manufactured by means of physical methods, including electron beam-physical vapor deposition, magnetron sputtering, ion plating, thermal spray, etc. This review paper introduces novel nanocomposite-type MCrAl(Y) coatings prepared by electrochemical methods of nanocomposite electrodeposition and further modified “electrophoretic deposition + electrodeposition.” The novel MCrAl(Y) coatings exhibit apparently enhanced ability in protective chromia or alumina scale formation, which can be attributed to the two-fold “nanoscale effect” of the dispersed particles and metal matrix grains. Based on a large amount of oxidation data of the nanocomposite-type NiCrAl coatings under different oxidation conditions, oxide maps showing the relationship between coatings’ composition and type of the oxides are constructed to offer guidance for designing the novel coatings. Moreover, the “electrophoretic deposition + electrodeposition” method has been further applied to conveniently integrate a metallic-ceramic diffusion barrier into a MCrAl(Y) coating/Ni-based superalloy system which can significantly block the interdiffusion between the coating and the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. W. Goward, Surface and Coatings Technology 108–109, 73 (1998).

    Article  Google Scholar 

  2. J. R. Nicholls, JOM 52, 28 (2000).

    Article  CAS  Google Scholar 

  3. M. Schütze, M. Malessa, V. Rohr, et al., Surface and Coatings Technology 201, 3872 (2006).

    Article  Google Scholar 

  4. L. Zhu, S. Zhu, F. Wang, et al., Corrosion Science 80, 393 (2014).

    Article  CAS  Google Scholar 

  5. J. R. Nicholls, MRS Bulletin 28, 659 (2003).

    Article  CAS  Google Scholar 

  6. D. Naumenko, V. Shemet, L. Singheiser, et al., Journal of Materials Science 44, 1687 (2009).

    Article  CAS  Google Scholar 

  7. X. Peng and F. Wang, Corrosion Science 45, 2293 (2003).

    Article  CAS  Google Scholar 

  8. P. Zhao, M. Shen, Y. Gu, et al., Corrosion Science 126, 317 (2017).

    Article  CAS  Google Scholar 

  9. P. Richer, M. Yandouzi, L. Beauvais, et al., Surface and Coatings Technology 204, 3962 (2010).

    Article  CAS  Google Scholar 

  10. C. Bezençon, A. Schnell, and W. Kurz, Scripta Materialia 49, 705 (2003).

    Article  Google Scholar 

  11. J. Foster, B. P. Cameron, and J. A. Carew, Transactions of the IMF 63, 115 (1985).

    Article  CAS  Google Scholar 

  12. F. J. Honey, E. C. Kedward, and V. Wride, Journal of Vacuum Science & Technology A 4, 2593 (1986).

    Article  CAS  Google Scholar 

  13. Y. Zhang, JOM 67, 2599 (2015).

    Article  CAS  Google Scholar 

  14. B. L. Bates, L. Z. Zhang, and Y. Zhang, Surface Engineering 31, 202 (2015).

    Article  CAS  Google Scholar 

  15. L. Z. Zhang, B. L. Bates, and Y. Zhang, Surface Engineering 33, 136 (2017).

    Article  CAS  Google Scholar 

  16. Y. Zhang, X. Peng, and F. Wang, Materials Letters 58, 1134 (2004).

    Article  CAS  Google Scholar 

  17. C. Zhang, X. Peng, J. Zhao, et al., Journal of The Electrochemical Society 152, B321 (2005)

    Article  CAS  Google Scholar 

  18. Y. Zhou, X. Peng, and F. Wang, Scripta Materialia 50, 1429 (2004).

    Article  CAS  Google Scholar 

  19. Y. Zhou, X. Peng, and F. Wang, Oxidation of Metals 64, 169 (2005).

    Article  CAS  Google Scholar 

  20. Y. Zhou, X. Peng, and F. Wang, Scripta Materialia 55, 1039 (2006).

    Article  CAS  Google Scholar 

  21. Z. Dong, X. Peng, Y. Guan, et al., Corrosion Science 62, 147 (2012).

    Article  CAS  Google Scholar 

  22. Z. Dong, Y. Xie, and X. Peng, Corrosion Science 194, 109915 (2022).

  23. X. Yang, X. Peng, C. Xu, et al., Journal of The Electrochemical Society 156, C167 (2009).

    Article  CAS  Google Scholar 

  24. H.-J. Zhang and J.-F. Sun, Transactions of Nonferrous Metals Society of China 25, 191 (2015).

    Article  CAS  Google Scholar 

  25. X. Yang, Y. Zhou, M. Zhao, et al., Journal of the Indian Chemical Society 100, 100822 (2023).

  26. X. Yang, X. Peng and F. Wang, Scripta Materialia 56, 891 (2007).

  27. H. Zhen and X. Peng, Surface and Coatings Technology 352, 541 (2018).

    Article  CAS  Google Scholar 

  28. H. Zhen and X. Peng, Corrosion Science 150, 121 (2019).

    Article  CAS  Google Scholar 

  29. X. Peng, Nanoscale 2, 262 (2010).

    Article  CAS  Google Scholar 

  30. X. Peng, H. Zhen, L. Tian, et al., Composites Part B: Engineering 234, 109721 (2022).

  31. N. Guglielmi, Journal of The Electrochemical Society 119, 1009 (1972).

  32. M. H. Li, Z. Y. Zhang, X. F. Sun, et al., Surface and Coatings Technology 165, 241 (2003).

    Article  CAS  Google Scholar 

  33. B. Wang, J. Gong, A. Y. Wang, et al., Surface and Coatings Technology 149, 70 (2002).

    Article  CAS  Google Scholar 

  34. W. Brandl, H. J. Grabke, D. Toma, et al., Surface and Coatings Technology 86–87, 41 (1996).

    Article  Google Scholar 

  35. H. Zhen, Y. Xie, L. Tian, et al., Surface and Coatings Technology 449, 128937 (2022).

    Article  CAS  Google Scholar 

  36. S. Shimabayashi, K. Kakehi, H. Murakami, et al., Journal of the Japan Institute of Metals and Materials 74, 508 (2010).

    Article  Google Scholar 

  37. S. Z. Dong, Y. K. Li, M. M. Xu, et al., Surface and Coatings Technology 452, 129105 (2023).

  38. E. Cavaletti, S. Naveos, S. Mercier, et al., Surface and Coatings Technology 204, 761 (2009).

    Article  CAS  Google Scholar 

  39. S. H. Hosseini, S. Mirdamadi, and S. Rastegari, Surface Engineering 31, 146 (2015).

    Article  CAS  Google Scholar 

  40. L. Tian, W. Liu, K. Wang, et al., Materials Chemistry and Physics 276, 125350 (2022).

  41. D. P. Whittle and J. Stringer, Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences 295, 309 (1997).

    Google Scholar 

  42. X. Wang, X. Peng, X. Tan, et al., Scientific Reports 6, 29593 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by Key project of Jiangxi Provincial Natural Science Foundation (Project Grant No. 20181ACB20009).

Author information

Authors and Affiliations

Authors

Contributions

YX: Conceptualization, Data curation, Writing-Original draft. LT: Writing-Review & editing. LY: Writing-Review & editing. XP: Supervision, Writing-Review & editing, Funding acquisition, Project administration.

Corresponding author

Correspondence to Xiao Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, Y., Tian, L., You, L. et al. Development and High-Temperature Corrosion Performance of MCrAl(Y) Coatings Prepared by Electrochemical Deposition: A Brief Review. High Temperature Corrosion of mater. 100, 475–489 (2023). https://doi.org/10.1007/s11085-023-10195-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-023-10195-x

Keywords

Navigation