Skip to main content
Log in

Oxidation and Scale Adhesion of a Type 430 Stainless Steel in Ar–CO2 Gas Mixtures at 800 °C

  • Original Paper
  • Published:
High Temperature Corrosion of Materials Aims and scope Submit manuscript

Abstract

Biogas is an alternative source of fuel potentially used to run solid oxide fuel cells (SOFCs). It mainly consists of CH4 and CO2 which can degrade the SOFC interconnect, which is typically made of stainless steel. To investigate the effect of each gas constituent, we focussed here on the effect of CO2 on high-temperature oxidation behavior of and scale adhesion on the stainless steel interconnect, Type 430 stainless steel. The samples studied were oxidised in CO2 at contents of 5–100% at 800 °C. The oxidation kinetics were found to be parabolic with the rate constant increasing when the CO2 content increased. The scale adhesion was assessed using a tensile-test method. The scale formed in the atmosphere containing higher CO2 content exhibited poorer scale adhesion, as indicated by a lower strain initiating the first spallation and a larger spallation percentage after the first spallation took place. The worsened scale adhesion relates to pores formed at the scale/steel interface. The adhesion energies were further quantified giving the values of about 40–100 J m–2. Oxidation mechanisms were suggested based on the dependence of the parabolic rate constant on the oxygen partial pressure and the inward diffusion of carbon-bearing species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings are available upon request from the corresponding author.

References

  1. X. Xi, J. Zhang, and D. J. Young, Corrosion behavior of Cr-containing alloys under cyclic reaction in wet CO2 gas at 650 °C. Oxid. Met. 96, 2021 (105–116).

    Article  CAS  Google Scholar 

  2. B. A. Pint, R. Pillai, M. J. Lance, and J. R. Keiser, Effect of pressure and thermal cycling on long-term oxidation in CO2 and supercritical CO2. Oxid. Met. 94, 2020 (505–526).

    Article  Google Scholar 

  3. R. P. Oleksak, G. R. Holcomb, C. S. Carney, L. Teeter, and Ö. N. Doğan, Effect of surface finish on high-temperature oxidation of steels in CO2, supercritical CO2, and air. Oxid. Met. 92, 2019 (525–540).

    Article  CAS  Google Scholar 

  4. P. Promdirek, G. Lothongkum, S. Chandra-ambhorn, Y. Wouters, and A. Galerie, Oxidation kinetics of AISI 441 ferritic stainless steel at high temperatures in CO2 atmosphere. Oxid. Met. 81, 2014 (315–329).

    Article  CAS  Google Scholar 

  5. R. P. Oleksak, C. S. Carney, L. Teeter, and Ö. N. Doğan, Oxidation behavior of welded Fe-based and Ni-based alloys in supercritical CO2. Oxid. Met. 97, 2022 (123–139).

    Article  CAS  Google Scholar 

  6. A. Brittan, J. Mahaffey, D. Adam, and M. Anderson, Mechanical and corrosion response of 316SS in supercritical CO2. Oxid. Met. 95, 2021 (409–425).

    Article  CAS  Google Scholar 

  7. R. Olivares, D. Young, P. Marvig, and W. Stein, Alloys SS316 and Hastelloy-C276 in supercritical CO2 at high temperature. Oxid. Met. 84, 2015 (585–606).

    Article  CAS  Google Scholar 

  8. N. Kamalimeera and V. Kirubakaran, Prospects and restraints in biogas fed SOFC for rural energization: a critical review in Indian perspective. Renew. Sustain. Energy Rev. 143, 2021 (110914).

    Article  CAS  Google Scholar 

  9. M. Gandiglio, A. Lanzini, M. Santarelli, M. Acri, T. Hakala, and M. Rautanen, Results from an industrial size biogas-fed SOFC plant (the DEMOSOFC project). Int. J. Hydrogen Energy 45, 2020 (5449–5464).

    Article  CAS  Google Scholar 

  10. H. Langnickel, M. Rautanen, M. Gandiglio, et al., Efficiency analysis of 50 kWe SOFC systems fueled with biogas from waste water. J. Power Sources Adv. 2, 2020 (100009).

    Article  Google Scholar 

  11. P. Promdirek, G. Lothongkhum, S. Chandra-ambhorn, Y. Wouters, and A. Galerie, Behaviour of ferritic stainless steels subjected to dry biogas atmospheres at high temperatures. Mater. Corros. 62, 2011 (616–622).

    Article  CAS  Google Scholar 

  12. K. Chouhan, S. Sinha, S. Kumar, and S. Kumar, Simulation of steam reforming of biogas in an industrial reformer for hydrogen production. Int. J. Hydrogen Energy. 46, 2021 (26809–26824).

    Article  CAS  Google Scholar 

  13. Y. Unpaprom, T. Pimpimol, K. Whangchai, and R. Ramaraj, Sustainability assessment of water hyacinth with swine dung for biogas production, methane enhancement, and biofertilizer. Biomass Convers. Biorefin. 11, 2021 (849–860).

    Article  CAS  Google Scholar 

  14. S. Chevalier, L. Combemale, I. Popa, et al., Development of SOFC interconnect stainless steels. Solid State Phenom. 300, 2020 (135–156).

    Article  Google Scholar 

  15. A. Chyrkin, K. O. Gunduz, V. Asokan, J.-E. Svensson, and J. Froitzheim, High temperature oxidation of AISI 441 in simulated solid oxide fuel cell anode side conditions. Corros. Sci. 203, 2022 (110338).

    Article  CAS  Google Scholar 

  16. M. R. Ardigo-Besnard, I. Popa, and S. Chevalier, Impact of pre-oxidation on the reactivity and conductivity in H2–H2O atmosphere of a ferritic stainless steel for high temperature water vapour electrolysis. Int. J. Hydrogen Energy. 47, 2022 (23508–23513).

    Article  CAS  Google Scholar 

  17. A. Vayyala, I. Povstugar, T. Galiullin, et al., Effect of Nb addition on oxidation mechanisms of high Cr ferritic steel in Ar–H2–H2O. Oxid. Met. 92, 2019 (471–491).

    Article  CAS  Google Scholar 

  18. B. Talic, S. Molin, P. V. Hendriksen, and H. L. Lein, Effect of pre-oxidation on the oxidation resistance of Crofer 22 APU. Corros. Sci. 138, 2018 (189–199).

    Article  CAS  Google Scholar 

  19. S. Chandra-ambhorn, F. Roussel-Dherbey, F. Toscan, Y. Wouters, A. Galerie, and M. Dupeux, Determination of mechanical adhesion energy of thermal oxide scales on AISI 430Ti alloy using tensile test. Mater. Sci. Technol. 23, 2007 (497–501).

    Article  CAS  Google Scholar 

  20. S. Chandra-ambhorn and N. Klubvihok, Quantification of adherence of thermal oxide scale on low carbon steel using tensile test. Oxid. Met. 85, 2016 (103–125).

    Article  CAS  Google Scholar 

  21. T. Nilsonthi, W. Issaard, and S. Chandra-ambhorn, Development of the scale adhesion assessment using a tensile testing machine equipped with a CCD camera. Oxid. Met. 88, 2017 (41–55).

    Article  CAS  Google Scholar 

  22. S. Chandra-ambhorn, T. Thublaor, and P. Wiman, High temperature oxidation of AISI 430 stainless steel in Ar-H2O at 800 °C. Corros. Sci. 167, 2020 (108489).

    Article  CAS  Google Scholar 

  23. P. Wiman, T. Thublaor, T. Rojhirunsakool, et al., Corrosion behaviour of AISI 430 stainless steel in O2–40%H2O at 800 °C. Corros. Sci. 203, 2022 (110323).

    Article  CAS  Google Scholar 

  24. D. J. Young, T. D. Nguyen, P. Felfer, J. Zhang, and J. M. Cairney, Penetration of protective chromia scales by carbon. Scr. Mater. 77, 2014 (29–32).

    Article  CAS  Google Scholar 

  25. M. Naghizadeh and H. Mirzadeh, Microstructural evolutions during annealing of plastically deformed AISI 304 austenitic stainless steel: martensite reversion, grain refinement, recrystallization, and grain growth. Metall. Mater. Trans. A 47, 2016 (4210–4216).

    Article  CAS  Google Scholar 

  26. I. Barin, Thermochemical Data of Pure Substances (VCH, Germany, 1995).

    Book  Google Scholar 

  27. Z. Yang, K. S. Weil, D. M. Paxton, and J. W. Stevenson, Selection and evaluation of heat-resistant alloys for SOFC interconnect applications. J. Electrochem. Soc. 150, 2003 (A1188–A1201).

    Article  CAS  Google Scholar 

  28. P. Kofstad, High Temperature Corrosion (Elsevier, UK, 1988).

    Google Scholar 

  29. C. H. P. Lupis, Chemical Thermodynamics of Materials (Prentice Hall, Singapore, 1993).

    Google Scholar 

  30. O. Kubaschewski, C. B. Alcock, and P. J. Spencer, Materials Thermochemistry (Pergamon, UK, 1993).

    Google Scholar 

  31. G. R. Holcomb and D. E. Alman, The effect of manganese additions on the reactive evaporation of chromium in Ni–Cr alloys. Scr. Mater. 54, 2006 (1821–1825).

    Article  CAS  Google Scholar 

  32. P. Atkins and J. de Paula, Atkins’ Physical Chemistry (Oxford University Press, UK, 2014).

    Google Scholar 

  33. T. D. Nguyen, J. Zhang, and D. J. Young, Effects of silicon on high temperature corrosion of Fe–Cr and Fe–Cr–Ni alloys in carbon dioxide. Oxid. Met. 81, 2014 (549–574).

    Article  CAS  Google Scholar 

  34. U. R. Evans, An Introduction to Metallic Corrosion (Edward Arnold, UK, 1948).

    Google Scholar 

  35. H. E. Evans, Stress effects in high temperature oxidation of metals. Int. Mater. Rev. 40, 1995 (1–40).

    Article  CAS  Google Scholar 

  36. A. M. Huntz, S. Daghigh, A. Piant, and J. L. Lebrun, Evidence of stress relaxation in thermally grown oxide layers—experiments and modelling. Mater. Sci. Eng. A 248, 1998 (44–55).

    Article  Google Scholar 

  37. R. Tylecote, Factors influencing the adherence of oxides on metals. J. Iron Steel Inst. 196, 1960 (135).

    CAS  Google Scholar 

  38. D. J. Young, High Temperature Oxidation and Corrosion of Metals (Elsevier, The Netherlands, 2016).

    Google Scholar 

  39. J. W. Fergus, Metallic interconnects for solid oxide fuel cells. Mater. Sci. Eng. A. 397, 2005 (271–283).

    Article  Google Scholar 

  40. Ueda M, Taimatsu H, Themal expansivity and high-temperature oxidation resistance of Fe-Cr-W alloys developed for a metallic separator of SOFC. In: European Solid Oxide Fuel Cell Forum Proceedings, Switzerland, 2000, 837–843.

  41. I. Saeki, T. Ohno, D. Seto, et al., Measurement of Young’s modulus of oxides at high temperature related to the oxidation study. Mater. High Temp. 28, 2011 (264–268).

    Article  CAS  Google Scholar 

  42. S. Chandra-ambhorn, Y. Wouters, L. Antoni, F. Toscan, and A. Galerie, Adhesion of oxide scales grown on ferritic stainless steels in solid oxide fuel cells temperature and atmosphere conditions. J. Power Sources 171, 2007 (688–695).

    Article  CAS  Google Scholar 

  43. G. J. Van den Berg, The effect of the non-linear stress–strain behaviour of stainless steels on member capacity. J. Constr. Steel Res. 54, 2000 (135–160).

    Article  Google Scholar 

  44. N. Li, J. Xiao, N. Prudhomme, Z. Chen, and V. Ji, Residual stresses in oxide scale formed on Fe–17Cr stainless steel. Appl. Surf. Sci. 316, 2014 (108–113).

    Article  CAS  Google Scholar 

  45. Chandra-ambhorn S, In: Reactivity and surface modification of stainless steels used as electric interconnectors in high temperature solid oxide fuel cells, PhD Thesis, INP Grenoble, France, 2006.

  46. J. Mougin, M. Dupeux, L. Antoni, and A. Galerie, Adhesion of thermal oxide scales grown on ferritic stainless steels measured using the inverted blister test. Mater. Sci. Eng. A 359, 2003 (44–51).

    Article  Google Scholar 

  47. H. Kurokawa, K. Kawamura, and T. Maruyama, Oxidation behavior of Fe–16Cr alloy interconnect for SOFC under hydrogen potential gradient. Solid State Ionics. 168, 2004 (13–21).

    Article  CAS  Google Scholar 

  48. T. Brylewski, M. Nanko, T. Maruyama, and K. Przybylski, Application of Fe–16Cr ferritic alloy to interconnector for a solid oxide fuel cell. Solid State Ionics. 143, 2001 (131–150).

    Article  CAS  Google Scholar 

  49. M. Stygar, T. Brylewski, A. Kruk, and K. Przybylski, Oxidation properties of ferritic stainless steel in dual Ar–H2–H2O/air atmosphere exposure with regard to SOFC interconnect application. Solid State Ionics. 262, 2014 (449–453).

    Article  CAS  Google Scholar 

  50. K. Przybylski and G. J. Yurek, The influence of implanted yttrium on the mechanisms of growth of chromia scales. Mater. Sci. Forum. 43, 1989 (1–74).

    Article  CAS  Google Scholar 

  51. Yurek GJ, Ann. Prog. Rept. DOE No. DE-AC-02–79ER-10507, Department of Energy, Gaithersburg, MD, USA, 1985

  52. V. S. Stubican and L. R. Carinci, Point defects and grain boundary diffusion in NiO and Fe3O4. Z. Phys. Chem. 207, 1998 (215–222).

    Article  CAS  Google Scholar 

  53. T. D. Nguyen, A. La Fontaine, L. Yang, J. M. Cairney, J. Zhang, and D. J. Young, Atom probe study of impurity segregation at grain boundaries in chromia scales grown in CO2 gas. Corros. Sci. 132, 2018 (125–135).

    Article  CAS  Google Scholar 

  54. E. A. Gulbransen and K. F. Andrew, A preliminary study of the oxidation and vapor pressure of chromium. J. Electrochem. Soc. 99, 1952 (402–406).

    Article  CAS  Google Scholar 

  55. E. A. Gulbransen and K. F. Andrew, Kinetics of the oxidation of chromium. J. Electrochem. Soc. 104, 1957 (334–338).

    Article  CAS  Google Scholar 

  56. T. Roy, L. Latu-Romain, I. Guillotte, B. Latouche, and Y. Wouters, Modeling of trilayered oxide thermally grown on 441 ferritic stainless steel at 900 °C in synthetic air. Oxid. Met. 96, 2021 (31–41).

    Article  CAS  Google Scholar 

  57. R. Chen and W. Yuen, Effects of the presence of water vapour on the oxidation behaviour of low carbon–low silicon steel in 1% O2–N2 at 1073 K. Oxid. Met. 79, 2013 (655–678).

    Article  CAS  Google Scholar 

  58. B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction (Pearson Prentice Hall, USA, 2001).

    Google Scholar 

  59. T. Gheno, D. Monceau, J. Zhang, and D. J. Young, Carburisation of ferritic Fe–Cr alloys by low carbon activity gases. Corros. Sci. 53, 2011 (2767–2777).

    Article  CAS  Google Scholar 

  60. R. P. Oleksak, G. R. Holcomb, C. S. Carney, and Ö. N. Doğan, Carburization susceptibility of chromia-forming alloys in high-temperature CO2. Corros. Sci. 206, 2022 (110488).

    Article  CAS  Google Scholar 

  61. N. Birks, G. H. Meier, and F. S. Pettit, Introduction to the High Temperature Oxidation of Metals (Cambridge University Press, UK, 2006).

    Book  Google Scholar 

  62. P. Sarrazin, A. Galerie, and J. Fouletier, Mechanisms of High Temperature Corrosion: A Kinetic Approach (Trans Tech Publications, Switzerland, 2008).

    Google Scholar 

Download references

Acknowledgements

PW and SC acknowledge the Royal Golden Jubilee PhD Scholarship given by Thailand Research Fund and National Research Council of Thailand, and TT acknowledges National Science, Research and Innovation Fund (NSRF) and King Mongkut’s University of Technology North Bangkok for research funding.

Funding

The research leading to these results received funding from Thailand Research Fund and National Research Council of Thailand under the Royal Golden Jubilee PhD Scholarship Program (Grant Agreement No. PHD/0156/2558) and National Science, Research and Innovation Fund (NSRF) and King Mongkut’s University of Technology North Bangkok (Contract no. KMUTNB-FF-66–22).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation was performed by SC; methodology by SC; formal analysis by PW, AM, PS, TT, WC and SC; writing—original draft—by PW and SC; writing—review and editing—by PW, TT, TS, WC and SC; funding acquisition by PW, TT and SC; resources by PW, TT, TS and SC; supervision by SC.

Corresponding author

Correspondence to Somrerk Chandra-ambhorn.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The objective of appendix is to derive Eq. (12). Consider the oxide \({\text{M}}_{{\nu_{1} }} {\text{O}}_{{\nu_{2} }}\) thermally grown on the metal M. Equation (16) is the Fick’s first law [47] expressing the molar flux of A standing for M or O as a function of its diffusivity D, molar concentration C, chemical potential μ and absolute temperature T, where x is the diffusing distance measured positively from the metal/oxide interface towards the oxide/gas interface and R is the universal gas constant.

$$j_{{\text{A}}} = - \frac{{D_{{\text{A}}} C_{{\text{A}}} }}{{{\text{R}}T}}\frac{{{\text{d}}\mu_{{\text{A}}} }}{{{\text{d}}x}}$$
(16)

If A is M, the relation between the chemical potential of M and that of O2 is according to the Gibbs–Duhem relation: \({\text{d}}\mu_{{\text{M}}} = ( - \nu_{2} /2\nu_{1} ){\text{d}}\mu_{{{\text{O}}_{2} }}\) [61]. If A is O, the relation between the chemical potential of O and O2 is as follows: \({\text{d}}\mu_{{\text{O}}} = (1/2){\text{d}}\mu_{{{\text{O}}_{2} }}\) [38]. With these relations and Eq. (16), Eq. (17) can be obtained with \(\phi^{\prime\prime}\) being \(\nu_{2} /2\nu_{1}\) for the diffusion of M by the cationic defects and being \(- 1/2\) for the diffusion of O by the anionic defects.

$$j_{A} = \phi^{\prime\prime}\frac{{D_{{\text{A}}} C_{{\text{A}}} }}{{{\text{RT}}}}\frac{{{\text{d}}\mu_{{{\text{O}}_{2} }} }}{{{\text{d}}x}}$$
(17)

Consider a part of the flux of A that is from the diffusion of defect \(\delta\) (\(j_{\delta }\)). By inserting the \(f_{\delta } D_{{{\text{o}}\delta }} p_{{O_{2} }}^{{\gamma_{\delta } }}\) term from Eq. (11) and the relation \({\text{d}}\mu_{{{\text{O}}_{2} }} = {\text{R}}T{\text{d}}\ln p_{{{\text{O}}_{2} }}\) to Eq. (17), Eq.(18) can be obtained.

$$j_{\delta } = \phi^{\prime\prime}_{\delta } f_{\delta } D_{o\delta } C_{\delta } p_{{O_{2} }}^{{\gamma_{\delta } - 1}} \frac{{{\text{d}}p_{{O_{2} }} }}{{{\text{d}}x}}$$
(18)

By integrating this equation from the metal/oxide to the oxide/gas interface and assuming steady state diffusion, we can obtain Eq. (19) where y is the oxide thickness.

$$j_{\delta } = \frac{{\phi_{\delta }^{\prime \prime } f_{\delta } D_{{{\text{o}}\delta }} C_{\delta } }}{{\gamma_{\delta } }}\left( {\frac{{p_{{{\text{O}}_{2} }}^{{\gamma_{\delta } }} - p_{{{\text{O}}_{2} ,{\text{int}} .}}^{{\gamma_{\delta } }} }}{y}} \right)$$
(19)

The flux due to metal diffusion (\(j_{{{\text{M}} }}\)) can also be written by Eq. (20) where \(C_{{M }}\) is the molar concentration of metal M in the oxide \({\text{M}}_{{\nu_{1} }} {\text{O}}_{{\nu_{2} }}\) [47, 62].

$$j_{{{\text{M}} }} = C_{{{\text{M}} }} \frac{{{\text{d}}y}}{{{\text{d}}t}}$$
(20)

Similarly, if α represents the ratio of the time oxygen spent to diffuse through the entire oxide thickness to the time the metal spent, the flux due to oxygen diffusion can be expressed as –CO(dy/αdt) where CO is the molar concentration of oxygen in the oxide. From this relation and Eqs. (19) and (20), Eq. (21) can be obtained where the coefficients \(\phi^{\prime}_{\delta }\) are \(\nu_{2} /{2}\nu_{1}\) and α/2 for the cationic and anionic defects, respectively.

$$y^{2} = \left( {\sum\limits_{i = 1}^{4} {\frac{{\phi^{\prime}_{{\delta_{i} }} f_{{\delta_{i} }} D_{{o\delta_{i} }} }}{{\gamma_{{\delta_{i} }} }}\left( {p_{{O_{2} }}^{{\gamma_{{\delta_{i} }} }} - p_{{O_{2} ,{\text{int}} .}}^{{\gamma_{{\delta_{i} }} }} } \right)} } \right) \cdot t$$
(21)

By converting the oxide thickness to the mass gain by the relation \((\Delta m/A) = \beta y\), we obtain Eq. (22) where the coefficients \(\phi_{\delta }\) are \(\nu_{2} \beta^{2} /{2}\nu_{1}\) and \(\alpha\beta^{2}/{2}\) for the cationic and anionic defects, respectively. In fact, Eq. (22) is the integrated form of the parabolic rate law with a parabolic rate constant (\(k_{{\text{p}}}\)) shown in Eq. (23). Each term in the right hand side of Eq. (23) is a part of \(k_{{\text{p}}}\) contributed from the diffusion of each defect—the n-type cationic, n-type anionic, p-type cationic and p-type s anionic defects. It is the one reported in Eq. (12).

$$\left( {\frac{\Delta m}{A}} \right)^{2} = \left( {\sum\limits_{i = 1}^{4} {\frac{{\phi_{{\delta_{i} }} f_{{\delta_{i} }} D_{{o\delta_{i} }} }}{{\gamma_{{\delta_{i} }} }}\left( {p_{{O_{2} }}^{{\gamma_{{\delta_{i} }} }} - p_{{O_{2} ,{\text{int}} .}}^{{\gamma_{{\delta_{i} }} }} } \right)} } \right) \cdot t = k_{{\text{p}}} \cdot t$$
(22)
$$k_{{\text{p}}} = \sum\limits_{i = 1}^{4} {\frac{{\phi_{{\delta_{i} }} f_{{\delta_{i} }} D_{{o\delta_{i} }} }}{{\gamma_{{\delta_{i} }} }}\left( {p_{{O_{2} }}^{{\gamma_{{\delta_{i} }} }} - p_{{O_{2} ,{\text{int}} .}}^{{\gamma_{{\delta_{i} }} }} } \right)}$$
(23)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiman, P., Muengjai, A., Srihathai, P. et al. Oxidation and Scale Adhesion of a Type 430 Stainless Steel in Ar–CO2 Gas Mixtures at 800 °C. High Temperature Corrosion of mater. 99, 279–310 (2023). https://doi.org/10.1007/s11085-023-10155-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-023-10155-5

Keywords

Navigation