Skip to main content
Log in

Influence of Gaseous Media Flow in the Dual Ar-H2-H2O/air Atmosphere Setup on the Scale Growth Kinetics of Crofer 22APU Ferritic Stainless Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The problem of gaseous media distribution within the metallic interconnects in solid oxide fuel cells (SOFCs) and its influence on the oxidation resistance of the applied materials is currently of great interest. In the presented work, an influence of gas flow within the dual Ar-H2-H2O/air atmosphere experimental setup on the oxidation behavior of the Crofer 22APU ferritic stainless steel was investigated. Examination of the sample oxidized for 1000 h in temperature of 800 °C revealed the presence of coaxial regions on the scale surface, with the differences in scale’s thicknesses in those regions being clearly visible. Additionally, the morphology of the surface changed significantly in a function of the radial distance from the sample’s center. To further examine the phenomena of uneven gas distribution, a model of the dual-atmosphere setup was created, using Ansys Workbench software. Obtained results suggest that the correlation between scale morphology and distribution of temperature and pressure on the sample’s surface, created by gas flow in the system, can be justified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.C. Singhal and K. Kendall, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Elsevier, Oxford, 2003

    Google Scholar 

  2. T. Kadowaki, T. Shiomitsu, E. Matsuda, H. Nakagawa, H. Tsuneizumi, and T. Maruyama, Applicability of Heat Resisting Alloys to the Separator of Planar Type Solid Oxide Fuel Cell, Solid State Ionics, 1993, 67, p 65–69

    Article  Google Scholar 

  3. ThyssenKrupp VDM GmbH - Trade press release. Accessed 15 July 2016. (http://www.thyssenkrupp.com/en/presse/art_detail.html&eid=tk_pnid930).

  4. P. Piccardo, S. Chevalier, R. Molins, M. Viviani, G. Caboche, A. Barbucci, M. Sennour, and R. Amendola, Metallic Interconnects for SOFC: Characterization of their Corrosion Resistance In Hydrogen/Water Atmosphere and at the Operating Temperatures of Differently Coated Metallic Alloys, Surf. Coat. Tech., 2006, 201, p 4471–4475

    Article  Google Scholar 

  5. Y. Liu, Performance Evaluation of Several Commercial Alloys in a Reducing Environment, J. Power Sources, 2008, 179, p 286–291

    Article  Google Scholar 

  6. R. Sachitanand, M. Sattari, J. Svensson, and J. Froitzheim, Evaluation of the Oxidation and Cr Evaporation Properties of Selected FeCr Alloys Used as SOFC, Int. J. Hydrogen Energ., 2013, 38, p 15328–15334

    Article  Google Scholar 

  7. M. Palcut, L. Mikkelsen, K. Neufeld, M. Chen, R. Knibbe, and P. Hendriksen, Corrosion Stability of Ferritic Stainless Steels for Solid Oxide Electrolyser Cell Interconnects, Corros. Sci., 2010, 52, p 3309–3320

    Article  Google Scholar 

  8. A. Jaroń and Z. Żurek, Oxidation Kinetics of Crofer 22APU Steel in an Atmosphere Containing SOs, Oxid. Met., 2012, 77, p 265–274

    Article  Google Scholar 

  9. N. Magdefrau, L. Chen, E. Sun, and M. Aindow, Effects of Alloy Heat Treatment on Oxidation Kinetics and Scale Morphology for Crofer 22 APU, J. Power Sources, 2013, 241, p 756–767

    Article  Google Scholar 

  10. A. Gil, J. Wyrwa, and T. Brylewski, Improving the Oxidation Resistance and Electrical Properties of Ferritic Stainless Steels for Application in SOFC Interconnects, Oxid. Met., 2016, 85, p 151–169

    Article  Google Scholar 

  11. Z. Żurek, T. Brylewski, A. Jaroń, and E. Chmura, Area Specific Resistance of the Scale Formed on Crofer 22APU Ferritic Steel in Atmospheres Containing SO2, Solid State Ionics, 2013, 234, p 33–39

    Article  Google Scholar 

  12. K. Przybylski, T. Brylewski, E. Durda et al., Oxidation Properties of the Crofer 22 APU Steel Coated with La0.6Sr0.4Co0.2Fe0.8O3 for IT-SOFC Interconnect Applications, J. Therm. Anal. Calorim., 2014, 116, p 825–834

    Article  Google Scholar 

  13. H. Kurokawa, K. Kawamura, and T. Maruyama, Oxidation Behavior of Fe–16Cr Alloy Interconnect for SOFC Under Hydrogen Potential Gradient, Solid State Ionics, 2004, 168, p 13–21

    Article  Google Scholar 

  14. K. Kawamura, T. Nitobe, H. Kurokawa, M. Ueda, and T. Maruyama, Effect of Electric Current on Growth of Oxide Scale on Fe–25Cr Alloy for SOFC Interconnect at 1073 K, J. Electrochem. Soc., 2012, 159, p B259–B264

    Article  Google Scholar 

  15. K. Fujita, T. Hashimoto, K. Ogasawara, H. Kameda, Y. Matsuzaki, and T. Sakurai, Relationship Between Electrochemical Properties of SOFC Cathode and Composition of Oxide Layer Formed on Metallic Interconnects, J. Power Sources, 2004, 131, p 270–277

    Article  Google Scholar 

  16. H. Kurokawa, Y. Oyama, and K. Kawamura, Hydrogen Permeation Through Fe-16Cr Alloy Interconnect in Atmosphere Simulating SOFC at 1073 K, J. Electrochem. Soc., 2004, 151, p A1264–A1268

    Article  Google Scholar 

  17. Z. Yang, M. Walker, P. Singh, J. Stevenson, and T. Norby, Oxidation Behavior of Ferritic Stainless Steels under SOFC Interconnect Exposure Conditions, J. Electrochem. Soc., 2004, 151, p B669–B678

    Article  Google Scholar 

  18. M.L.E. Leonard, R. Amendola, P.E. Gannon, W.J. Shong, and C.K. Liu, High-Temperature (800 C) Dual Atmosphere Corrosion of Electroless Nickel-Plated Ferritic Stainless Steel, Int. J. Hydrogen Energ., 2014, 39, p 15746–15753

    Article  Google Scholar 

  19. W. Huang, S. Gopalan, U. Pal, and S. Basu, Oxidation Studies on Crofer 22 APU Alloy Under Simulated SOFC Operating Conditions, ECS Trans., 2007, 7, p 2379–2384

    Article  Google Scholar 

  20. P. Piccardo, S. Fontana, M. Sennour, R. Amendola, M. Viviani, Z. Ilhan, L. Combemale, K. Przybylski, Testing metallic Interconnects for SOFC with working “real life” parameters at 600 °C, In Proceeding of: European Fuel cell Forum, 2011, B10, pp. 42–52.

  21. A.W.B. Skilbred and R. Haugsrud, The Effect of Water Vapour on the Corrosion of Sandvik Sanergy HT Under Dual Atmosphere Conditions, Oxid. Met., 2013, 79, p 639–654

    Article  Google Scholar 

  22. G.R. Holcomb, Effects of Temperature Gradients and Heat Fluxes on High-Temperature Oxidation, Oxid. Met., 2008, 69, p 181–192

    Article  Google Scholar 

  23. H. Asteman, J. Svensson, and L. Johansson, Evidence for Chromium Evaporation Influencing the Oxidation of 304L: The Effect of Temperature and Flow Rate, Oxid. Met., 2002, 57, p 193–216

    Article  Google Scholar 

  24. M. Stygar, T. Brylewski, and M. Rękas, Effects of changes in MOLB-type SOFC Cell Geometry on Temperature Distribution and Heat Transfer Rate in Interconnects, Int. J. Heat Mass Transfer, 2012, 55, p 4421–4426

    Article  Google Scholar 

  25. Y. Yang, G. Wang, H. Zhang, and W. Xia, Computational Analysis of Thermo-Fluid and Electrochemical Characteristics of MOLB-type SOFC Stacks, J. Power Sources, 2007, 173, p 233–239

    Article  Google Scholar 

  26. S.K. Yen and Y.C. Tsai, Critical Hydrogen Concentration for the Brittle Fracture of AISI, 430 Stainless Steel, J. Electrochem. Soc., 1996, 143, p 2736–2741

    Article  Google Scholar 

Download references

Acknowledgments

The financial support of the National Science Centre for PRELUDIUM 6 project no. 2013/11/N/ST5/01391 (reg. number) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirosław Stygar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stygar, M., Dąbrowa, J., Dziembaj, P. et al. Influence of Gaseous Media Flow in the Dual Ar-H2-H2O/air Atmosphere Setup on the Scale Growth Kinetics of Crofer 22APU Ferritic Stainless Steel. J. of Materi Eng and Perform 26, 540–546 (2017). https://doi.org/10.1007/s11665-016-2490-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-016-2490-9

Keywords

Navigation