Skip to main content

Advertisement

Log in

Quantification of Adherence of Thermal Oxide Scale on Low Carbon Steel Using Tensile Test

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

In the present work, a tensile test method was used to investigate the adhesion of thermal oxide scale on low carbon steels oxidised in O2 containing 20 % H2O at 850 °C for up to 120 s. The mechanical adhesion energy was quantified, and a theoretical framework was developed to investigate the factors affecting the quantification i.e., the residual stress and Young’s modulus of the oxide scale. It was found that the quantified adhesion energies were in the range of 18–240 J m−2. When a higher value of the residual stress was used for the quantification, the quantified mechanical adhesion energy was decreased to a critical value and afterwards turned to be higher because of the increased strain energy accumulated in the oxide due to the stress in the direction perpendicular to the tensile loading. Furthermore, when a higher value of Young’s modulus of the oxide was used for the quantification, a higher quantified mechanical adhesion energy was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. E. Ferodova, D. Monceau and D. Oquab, Corrosion Science 52, 2010 (3932).

    Article  Google Scholar 

  2. J. Mougin, M. Dupeux, A. Galerie and L. Antoni, Materials Science and Technology 18, 2002 (1217).

    Article  Google Scholar 

  3. J. Mougin, M. Dupeux, L. Antoni and A. Galerie, Materials Science and Engineering A 359, 2003 (44).

    Article  Google Scholar 

  4. M. Krzyzanowski, J. H. Beynon and D. J. J. Farrugia, Oxide Scale Behavior in High Temperature Metal Processing, (Wiley-VCH, Weinheim, 2010).

    Book  Google Scholar 

  5. M. N. Nagl and W. T. Evans, Journal of Materials Science 28, 1993 (6247).

    Article  Google Scholar 

  6. S. Chandra-ambhorn, F. Roussel-Dherbey, F. Toscan, Y. Wouters, A. Galerie and M. Dupeux, Materials Science and Technology 23, 2007 (497).

    Article  Google Scholar 

  7. S. Chandra-ambhorn, Y. Wouters, L. Antoni, F. Toscan and A. Galerie, Journal of Power Sources 171, 2007 (688).

    Article  Google Scholar 

  8. S. Chandra-ambhorn, T. Nilsonthi, Y. Wouters and A. Galerie, Steel Research International 81, 2010 (130).

    Google Scholar 

  9. K. Ngamkham, S. Niltawach and S. Chandra-ambhorn, Key Engineering Materials 462–463, 2011 (407).

    Article  Google Scholar 

  10. T. Nilsonthi, S. Chandra-ambhorn, Y. Wouters and A. Galerie, Oxidation of Metals 79, 2013 (325).

    Article  Google Scholar 

  11. S. Chandra-ambhorn, K. Ngamkham and N. Jiratthanakul, Oxidation of Metals 80, 2013 (61).

    Article  Google Scholar 

  12. Y. Kondo and H. Tanei, Journal of the Japan Society for Technology of Plasticity 54, 2013 (984).

    Article  Google Scholar 

  13. U. R. Evans, An Introduction to Metallic Corrosion, (Edward Arnold, London, 1948).

    Google Scholar 

  14. H. E. Evans, International Materials Review 40, 1995 (1).

    Article  Google Scholar 

  15. H. E. Evans, Oxidation of Metals 79, 2013 (3).

    Article  Google Scholar 

  16. J. Robertson and M. I. Manning, Materials Science and Technology. 6, 1990 (81).

    Article  Google Scholar 

  17. M. Schütze, Materials at High Temperatures 22, 2005 (147).

    Article  Google Scholar 

  18. M. Schütze, P. F. Tortorelli and I. G. Wright, Oxidation of Metals 73, 2010 (389).

    Article  Google Scholar 

  19. I. Barin, Thermochemical Data of Pure Substances, (VCH, Weinheim, 1989).

    Google Scholar 

  20. O. Kubaschewski and E. L. L. Evans, Metallurgical Thermochemistry, (Pergamon Press, Oxford, 1979).

    Google Scholar 

  21. N. Birks, G. H. Meier and F. S. Pettit, Introduction to the High-Temperature Oxidation of Metals, (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

  22. M. Schütze, Stress Effects in High Temperature Oxidation. in Shreir’s Corrosion, vol. I, eds. R. A. Richardson, et al. (Elsevier, Amsterdam, 2010).

    Google Scholar 

  23. R. G. Budynas, Advanced Strength and Applied Stress Analysis, (McGraw-Hill, Singapore, 1999).

    Google Scholar 

  24. M. R. Spiegel, Mathematical Handbook, (McGraw-Hill, Singapore, 1990).

    Google Scholar 

  25. A. Rahmel and J. Tobolski, Corrosion Science 5, 1965 (333).

    Article  Google Scholar 

  26. C. W. Tuck, M. Odgers and K. Sachs, Corrosion Science 9, 1969 (271).

    Article  Google Scholar 

  27. S. R. J. Saunders, M. Monteiro and F. Rizzo, Progress in Materials Science 53, 2008 (775).

    Article  Google Scholar 

  28. S. Chandra-ambhorn, T. Nilsonthi, Y. Wouters and A. Galerie, Corrosion Science 87, 2014 (101).

    Article  Google Scholar 

  29. R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 79, 2013 (655).

    Article  Google Scholar 

  30. E. Ahtoy, G. Leprince, M. Picard, Y. Wouters, A. Galerie, X. Wang, A. Atkinson, International Symposium on High-Temperature Oxidation and Corrosion 2014, Hakodate, Hokkaido, Japan, June 23–27, 2014, pp. 157–158.

  31. J. Mougin, A. Galerie, M. Dupeux, N. Rosman, G. Lucazeau, A.-M. Huntz and L. Antoni, Materials and Corrosion 53, 2002 (486).

    Article  Google Scholar 

  32. A. Galerie, F. Toscan, M. Dupeux, J. Mougin, G. Lucazeau, C. Valot, A.-M. Huntz and L. Antoni, Materials Research 7, 2004 (81).

    Article  Google Scholar 

  33. H. Buscail, E. Sciora, J. P. Larpin and N. Gerard, Oxidation of Metals 48, 1997 (417).

    Article  Google Scholar 

  34. B.-K. Kim, Ph.D. Thesis, McGill University, Canada, 2003.

Download references

Acknowledgments

The acknowledgment is given to Thailand Toray Science Foundation for a research grant to S. Chandra-ambhorn, and to the Faculty of Engineering of King Mongkut’s University of Technology North Bangkok for the financial support to N. Klubvihok. Sahaviriya Steel Industries public company limited is acknowledged for providing the steels for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somrerk Chandra-ambhorn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra-ambhorn, S., Klubvihok, N. Quantification of Adherence of Thermal Oxide Scale on Low Carbon Steel Using Tensile Test. Oxid Met 85, 103–125 (2016). https://doi.org/10.1007/s11085-015-9583-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-015-9583-y

Keywords

Navigation