Skip to main content
Log in

The Effect of Silicon on the Oxidation of a Ni-6 at.% Al Alloy in 1 atm of pure O2 at 900°C

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The oxidation behavior of a binary Ni–6Al alloy and of three ternary Ni–xSi–6Al alloys containing 2, 4 and 6 at.% Si has been studied at 900°C under 1 atm of pure O2. The addition of 2 at.% Si to Ni–6Al increases the short-time oxidation rate of Ni–6Al, which is subsequently reduced and becomes similar to that of the binary alloy. However, the presence of this silicon level is already able to stop after some time the coupled internal oxidation of Al+Si by forming a healing oxide layer rich of alumina at the front of internal oxidation. The addition of 4 at.% Si to the same alloy permits a more rapid inhibition of the internal oxidation and the formation of a steady-state, inner alumina-rich scale. Finally, the addition of 6 at.% Si prevents the internal oxidation completely and leads to an earlier growth of a protective oxide layer in contact with the alloy as well as to a further reduction in the scaling rate. The role of Si in promoting the formation of protective scales in comparison with the binary alloy is examined on the basis of an extension to ternary alloys of a criterion proposed by Wagner for the transition between the internal and external oxidation of the most reactive component in binary alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. W. Ross and C. T. Sims, in Superalloys II, C. T. Sims, N. S. Stoloff, and W. C. Hagel, eds., (Wiley Interscience, New York, 1987), Ch. 4.

  2. Meier G. H. (1988) In: Grobstein T. and Doychack J. (eds) Oxidation of High Temperature Intermetallics. TMS, Warrendale, pp. 1

    Google Scholar 

  3. Stott F. H., Wood G. C., and Stringer J. (1995) Oxidation of Metals 44:113

    Article  CAS  Google Scholar 

  4. Pettit F. S. (1967) Transaction Metal Society AIME 239:1296

    CAS  Google Scholar 

  5. Kerr T. W. and Simkovich G. (1976) In: Foroulis Z. A. and Pettit F. S. (eds) Properties of High-Temperature Alloys. The Electrochemical Society, Princeton, pp. 576

    Google Scholar 

  6. Yi H. C., Guan S. W., Smeltzer W. W. and Petric A. (1994) Acta Metallurgica et Materilia 42:981

    Article  CAS  Google Scholar 

  7. Guan S. W., Yi H. C., Smeltzer W. W. (1994) Oxidation of Metals 41:377

    Article  CAS  Google Scholar 

  8. Guan S. W., Yi H. C., and Smeltzer W. W. (1994) Oxidation of Metals 41:389

    Article  CAS  Google Scholar 

  9. Yi H. C., Shi S. Q., Smeltzer W. W., and Petric A. (1995) Oxidation of Metals 43:115

    Article  CAS  Google Scholar 

  10. Niu Y. Wu Y., and Gesmundo F. (2006) Corrosion Science 48:1

    Article  CAS  Google Scholar 

  11. Wagner C. (1965) Corrosion Science 5:751

    Article  CAS  Google Scholar 

  12. F. Gesmundo and Y. Niu, Oxidation of Metals (in press)

  13. Wagner C. (1959) Z. Electrochemie 63:772

    CAS  Google Scholar 

  14. Rapp R. A. (1965) Corrosion 21:382

    CAS  Google Scholar 

  15. Niu Y. and Gesmundo F. (2004) Oxidation of Metals 62:341

    Article  CAS  Google Scholar 

  16. Crank J. (1956) The Mathematics of Diffusion. Clarendon Press, Oxford

    Google Scholar 

  17. Park J. W. and Altstetter C. J. (1987) Metals Transaction 18A:43

    CAS  Google Scholar 

  18. Green A. and Swindells N. (1985) Materials Science Technology 1:101

    CAS  Google Scholar 

  19. Swalin R. A., Martin A., and Olson R. (1957) Transaction of Metal Society AIME 209:936

    Google Scholar 

  20. Elrefaie F. A., Manolescu A., and Smeltzer W. W. (1985) Journal of Electrochemical Society 132:2489

    Article  CAS  Google Scholar 

  21. Martinez-Villafane A., Stott F. H., Chacon-Nava J. G., and Wood G. C. (2002) Oxidation of Metals 57:267

    Article  CAS  Google Scholar 

  22. Niu Y. and Gesmundo F. (2004) Oxidation of Metals 62:391

    Article  CAS  Google Scholar 

  23. Gaskell D. R. (1995) Introduction to Thermodynamics of Materials. Taylor and Francis, Washington

    Google Scholar 

  24. Wagner C. (1952) Journal of Electrochemical Society 99:369

    CAS  Google Scholar 

  25. Adachi T. and Meier G. H. (1987) Oxidation of Metals 27:347

    Article  CAS  Google Scholar 

  26. Hindam H. M. and Smeltzer W. W. (1980) Journal of Electrochemical Society 127:1622

    Article  CAS  Google Scholar 

  27. Ahmed H. A. and Smeltzer W. W. (1986) Journal of Electrochemical Society 133:212

    Article  CAS  Google Scholar 

  28. Guruswami S., Park S. M., Hirth J. P., and Rapp R. A. (1986) Oxidation of Metals 26:77

    Article  Google Scholar 

  29. Bradley L., Wood G. C., and Stott F. H. (1997) Materials Science Forum 251–254:341

    Article  Google Scholar 

  30. Rapp R. A. (1961) Acta Metallurgica 9:730

    Article  CAS  Google Scholar 

  31. Stott F. H., Gabriel G. J., and Wood G. C. (1987) Oxidation of Metals 28:329

    Article  CAS  Google Scholar 

Download references

Acknowledgments

A financial support by the National Natural Scientific Foundation of China (NSFC) under the Grants (No. 50271079 and 50571107) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Niu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Y., Gesmundo, F. & Niu, Y. The Effect of Silicon on the Oxidation of a Ni-6 at.% Al Alloy in 1 atm of pure O2 at 900°C. Oxid Met 65, 53–74 (2006). https://doi.org/10.1007/s11085-006-9001-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-006-9001-6

Keywords

Navigation