Skip to main content
Log in

High Temperature Oxidation Behavior of 9–12 % Cr Ferritic/Martensitic Steels in a Simulated Dry Oxyfuel Environment

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The materials in oxyfuel power plant will be subjected to CO2− and SO2−rich gases on the fireside. The oxidation behaviour of two 9–12 % Cr steels T92 and VM12 was studied under dry oxyfuel environment in the temperature range of 580–650 °C for up to 1,000 h. The oxide structure and morphology were analyzed using various experimental techniques. A complex temperature dependence of oxidation rate is observed for both T92 and VM12 whereby the oxidation rate decreased with increasing temperature. This is attributed to increased Cr-enrichment in the inner scale with increasing temperature. T92 and VM12 alloys are also susceptible to carburization in an oxyfuel environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. D. Huenert and A. Kranzmann, Corrosion Science 53, 2306 (2011).

    Article  Google Scholar 

  2. D. Huenert, W. Schulz and A. Kranzmann, Power Plant Chemistry 12, 344 (2010).

    Google Scholar 

  3. N. Otsuka, Oxidation of Metals 80, 555 (2013).

    Article  Google Scholar 

  4. D. Huenert, W. Schulz, and A. Kranzmann, Proceedings of International Conference on Properties of Water and Steam ‘ICPWS XV’, Berlin, September 8–11, 2008.

  5. A. Kranzmann, T. Neddemeyer, A. S. Ruhl, D. Huenert, D. Bettge, G. Oder and R. Saliwan Neumann, International Journal of Greenhouse Gas Control 5S, S168 (2011).

    Article  Google Scholar 

  6. D. Fleig, K. Andersson, F. Normann and F. Johnsson, Industrial and Engineering Chemistry Research 50, 8505 (2011).

    Article  Google Scholar 

  7. R. Stanger and T. Wall, Progress in Energy and Combustion Science 37, 69 (2011).

    Article  Google Scholar 

  8. W. Schulz, D. Huenert, H. Nitschke, R. Saliwan-Neumann, and A. Kranzmann, Paper No. 09264, NACE Corrosion 2009, Atlanta, GA, March 22–26, 2009.

  9. G. H. Meier, K. Jung, N. Mu, N. M. Yanar, F. S. Petit, J. P. Abellan, T. Olszewski, L. N. Hierro, W. J. Quadakkers and G. R. Holcomb, Oxidation of Metals 74, 319 (2010).

    Article  Google Scholar 

  10. D. Huenert and A. Kranzmann, Paper No. 08447, NACE Corrosion 2008, New Orleans, LA, March, 2008.

  11. J. Zurek, E. Wessel, L. Niewolak, F. Schmitz, T.-U. Kern, L. Singheiser and W. J. Quadakkers, Corrosion Science 46, 2301 (2004).

    Article  Google Scholar 

  12. L. Sanchez, M. P. Hierro and F. J. Perez, Oxidation of Metals 71, 173 (2009).

    Article  Google Scholar 

  13. I. G. Wright and R. B. Dooley, International Materials Review 55, 129 (2010).

    Article  Google Scholar 

  14. C. B. Alcock, M. G. Hocking and S. Zador, Corrosion Science 9, 111 (1969).

    Article  Google Scholar 

  15. A. Rahmel, Corrosion Science 13, 125 (1973).

    Article  Google Scholar 

  16. B. Haflan and P. Kofstad, Corrosion Science 23, 1333 (1983).

    Article  Google Scholar 

  17. K. P. Lillerud, B. Haflan and P. Kofstad, Oxidation of Metals 21, 119 (1984).

    Article  Google Scholar 

  18. A. Holt and P. Kofstad, Materials Science and Engineering A120, 101 (1989).

    Article  Google Scholar 

  19. A. Jardnas, J.-E. Svensson and L.-G. Johansson, Oxidation of Metals 60, 427 (2003).

    Article  Google Scholar 

  20. T. Jonsson, A. Jardnas, J.-E. Svensson, L.-G. Johansson and M. Halvarsson, Oxidation of Metals 67, 193 (2007).

    Article  Google Scholar 

  21. A. Jardnas, J.-E. Svensson and L.-G. Johansson, Oxidation of Metals 69, 249 (2008).

    Article  Google Scholar 

  22. D. J. Young, J. Zurek, L. Singheiser and W. J. Quadakkers, Corrosion Science 53, 2131 (2011).

    Article  Google Scholar 

  23. P. J. Ennis and W. J. Quadakkers, International Journal of Pressure Vessels and Piping 84, 75 (2007).

    Article  Google Scholar 

  24. J. Zurek, L. N. Hierro, J. P. Abellan, L. Niewolak, L. Singheiser and W. J. Quadakkers, Materials Science Forum 461–464, 791 (2004).

    Article  Google Scholar 

  25. L. N. Hierro, V. Rohr, P. J. Ennis, M. Schutze and W. J. Quadakkers, Materials and Corrosion 56, 890 (2005).

    Article  Google Scholar 

  26. A. S. Khanna, P. Rodriguez and J. B. Gnanamoorthy, Oxidation of Metals 26, 171 (1986).

    Article  Google Scholar 

  27. J. G. Wolter, Oxidation of Metals 46, 129 (1996).

    Article  Google Scholar 

  28. R. Y. Chen and W. Y. D. Yuen, Oxidation of Metals 59, 433 (2003).

    Article  Google Scholar 

  29. J. G. Wolter, Oxidation of Metals 11, 81 (1977).

    Article  Google Scholar 

  30. P. Singh and N. Birks, Werkstoffe and Korrosion 31, 682 (1980).

    Article  Google Scholar 

  31. D. J. Young and S. Watson, Oxidation of Metals 44, 239 (1995).

    Article  Google Scholar 

  32. F. Rouillard, G. Moine, M. Tabarant and J. C. Ruiz, Oxidation of Metals 77, 57 (2012).

    Article  Google Scholar 

  33. W. J. Quadakkers, T. Olszewski, J. P. Abellan, V. Shemet and L. Singheiser, Materials Science Forum 696, 194 (2011).

    Article  Google Scholar 

  34. P. Becker and D. J. Young, Oxidation of Metals 67, 267 (2007).

    Article  Google Scholar 

  35. G. C. Wood and D. P. Whittle, Corrosion Science 7, 763 (1967).

    Article  Google Scholar 

  36. M. G. C. Cox, B. McEnaney and V. D. Scott, Philosophical Magazine 31, 331 (1975).

    Article  Google Scholar 

  37. M. Schutze, M. Schorr, D. P. Renusch, A. Donchev and J. P. T. Vossen, Materials Research 7, 111 (2004).

    Article  Google Scholar 

  38. D. Laverde, T. G. Acebo and F. Castro, Corrosion Science 46, 613 (2004).

    Article  Google Scholar 

  39. T. Gheno, D. Monceau, J. Zhang and D. J. Young, Corrosion Science 53, 2767 (2011).

    Article  Google Scholar 

  40. A. Kranzmann, D. Huenert, H. Rooch, I. Urban, W. Schulz, and W. Oesterle, Paper No. 09265, NACE Corrosion 2009, Atlanta, GA, March 22–26, 2009.

  41. D. Huenert, W. Schulz, H. Nitschke, R. Saliwan-Neumann, G. Oder, and A. Kranzmann, Paper No. 09263, NACE Corrosion 2009, Atlanta, GA, March 22–26, 2009.

  42. J. P. Abellan, T. Olszewski, H. J. Penkalla, G. H. Meier, L. Singheiser and W. J. Quadakkers, Materials at High Temperatures 26, 63 (2009).

    Article  Google Scholar 

  43. P. Pohjanne, S. Y. Olli, P. Auerkari, S. Tuurna, P. Jauhiainen, E. Turunen, T. Varis, K. Ruusuvuori, and M. Makipaa, NACE Corrosion 2010, Paper No. 10200, Houston, 2010.

  44. C. T. Fujii and R. A. Meussner, Journal of the Electrochemical Society 114, 435 (1967).

    Article  Google Scholar 

Download references

Acknowledgments

K. Chandra would like to acknowledge Adolf Martens Foundation for his post-doctoral fellowship program under which this research was carried out. F. Rizzo thanks the support from CAPES, CNPq and FAPERJ. The authors also wish to thank Mr. Gobel Artur for his contribution in conducting the corrosion experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Chandra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandra, K., Kranzmann, A., Saliwan Neumann, R. et al. High Temperature Oxidation Behavior of 9–12 % Cr Ferritic/Martensitic Steels in a Simulated Dry Oxyfuel Environment. Oxid Met 83, 291–316 (2015). https://doi.org/10.1007/s11085-014-9521-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-014-9521-4

Keywords

Navigation