Skip to main content
Log in

On the reaction mechanism of nickel with SO2+O2/SO3

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

High-purity nickel has been reacted with 96% O2+4% SO2 at 700–900°C. The reaction has been studied at 700°C as a function of the total gas pressure (0.06–1 atm) and at 1 atm as a function of temperature (700–900°C). The reaction mechanism changes with the effective pressure of p(SO3) in the gas. When NiSO4 (NiO + SO3 = NiSO4) is formed on the scale surface, the scale consists of a two-phase mixture of NiO + Ni3S2; in addition, sulfur is enriched at the metal/scale interface. A main process in the reaction is rapid outward diffusion of nickel through the Ni3S2 phase in the scale; the nickel reacts with NiSO4 to yield NiO, Ni3S2, and possibly NiS as an intermediate product. When NiSO4 cannot be formed, the scale consists of NiO, and small amounts of sulfur accumulate at the metal/scale interface. It is proposed that the reaction under these conditions is primarily governed by outward grain boundary diffusion of nickel through the NiO scale, and in addition, small amounts of SO2 migrate inward through the scale—probably along microchannels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. E. Alcock, M. G. Hocking, and S. Zador,Corr. Sci. 9, 111 (1969).

    Google Scholar 

  2. V. Vasantasree and M. G. Hocking,Con. Sci. 16, 261 (1976).

    Google Scholar 

  3. M. G. Hocking and V. Vasantasree,Corr. Sci. 16, 279 (1976).

    Google Scholar 

  4. C. S. Giggins and F. S. Pettit,Oxid. Met. 14, 363 (1979).

    Google Scholar 

  5. B. Haflan and P. Kofstad,Corr. Sci. 23, 1333 (1983).

    Google Scholar 

  6. K. Holthe and P. Kofstad,Corr. Sci. 20, 919 (1980).

    Google Scholar 

  7. T. Rosenqvist,J. Iron Steel Inst. 176, 49 (1954).

    Google Scholar 

  8. T. R. Ingraham,Trans. AIME 236, 1064 (1966).

    Google Scholar 

  9. J. Barin, O. Knacke, and O. Kubaschewski,Thermochemical Prop. Inorg. Substances, Suppl. (Springer-Verlag, Berlin, 1977).

    Google Scholar 

  10. M. Nagamori and T. R. Ingraham,Met. Trans. 1, 1821 (1970).

    Google Scholar 

  11. R. Y. Lin, D. C. Hu, and Y. A. Chang,Met. Trans. 9B, 531 (1978).

    Google Scholar 

  12. S. Mrowec,Defects and Diffusion in Solids (PWN, Warzawa, 1980).

    Google Scholar 

  13. M. C. Pope and N. Birks,Oxid. Met. 12, 173 (1978).

    Google Scholar 

  14. S. Smith,Trans. Met. Soc., AIME 175, 15 (1948).

    Google Scholar 

  15. K. L. Luthra and W. L. Worrell,Met. Trans. 9A, 1055 (1978).

    Google Scholar 

  16. B. D. Bastow and G. C. Wood,Oxid. Met. 9, 473 (1975).

    Google Scholar 

  17. A. Stoklosa and J. Stringer,Oxid. Met. 11, 277 (1977).

    Google Scholar 

  18. A. Atkinson, R. I. Taylor, and A. E. Hughes, to be published.

  19. J. M. Perrow, W. W. Smeltzer, and J. D. Embury,Acta Met. 15, 577 (1967);16, 1209 (1968).

    Google Scholar 

  20. R. Herchl, N. N. Kjoi, T. Homma, and W. W. Smeltzer,Oxid. Met. 4, 35 (1972).

    Google Scholar 

  21. N. N. Khoi, W. W. Smeltzer, and J. D. Embury,J. Electrochem. Soc. 122, 1495 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lillerud, K.P., Haflan, B. & Kofstad, P. On the reaction mechanism of nickel with SO2+O2/SO3 . Oxid Met 21, 119–134 (1984). https://doi.org/10.1007/BF00741467

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00741467

Key words

Navigation