Skip to main content
Log in

A mathematical study of electromagnetic waves diffraction by a slit in non-thermal plasma

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

This research presents the wave propagation analysis due to the interaction between electromagnetic waves and a finite-width slit embedded in an anisotropic medium. The separated field results are obtained in the case of Neumann boundary conditions while employing Fourier transform and Wiener–Hopf analysis. The numerical findings using the rectangular and polar plots of the far-field are presented to investigate the impacts of various physical parameters and characteristics of the anisotropic medium. The results provide significant insights, including the amplification of oscillations with changes in wave number and slit width, the reduction of wave dispersion in anisotropic media, and the observation of an extended wavelength with an expanding electron charge density in the separated field. Notably, nullity occurs at observation angles of 0 and ?, offering valuable directions for future research. These findings enhance comprehension of electromagnetic wave diffraction in anisotropic media, with implications for optics and telecommunications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

No new data was created or analysed in this study. Data sharing is not applicable to this article.

Abbreviations

EM:

Electromagnetic

\({\mathcal {F}}_{+}\) :

Fourier transform of \(H_{z}\left( x,y\right)\) for right of the slit

\({\mathcal {F}}_{-}\) :

Fourier transform of \(H_{z}\left( x,y\right)\) for left of the slit

\({\mathcal {F}}_{l}\) :

Fourier transform of \(H_{z}\left( x,y\right)\) for finite width

\({\mathcal {F}}^{inc}\) :

Fourier transform of incident field

\({\mathcal {F}}^{ref}\) :

Fourier transform of reflected field

\(H_{dc}\) :

Magnitude of geomagnetic field vector

\(H_{z}\left( x,y\right)\) :

Orthogonal magnetic field to the plane

\(H_{z}^{tot}\left( x,y\right)\) :

Total field

\(H_{z}^{inc}\left( x,y\right)\) :

Incident field

\(H_{z}^{ref}\left( x,y\right)\) :

Reflected field

\(H_{z}^{diff}\left( x,y\right)\) :

Diffracted field

\(H_{z}^{sep}\left( x,y\right)\) :

Separated field

\(H_{z}^{int}\left( x,y\right)\) :

Interaction field

\(k_{eff}\) :

Wave propagation constant

l :

Slit parameter for width

x, y, z :

Coordinate axes

\(\beta\) :

Fourier transform variable of x

\(\gamma\) :

Coefficient function of \({\mathcal {F}}\)

\(\theta _{0}\) :

Angle of incidence

i :

Iota

\({\mathcal {K}}\left( \beta \right)\) :

Kernel function

\(\sigma\) :

Real part of \(\beta\)

\(\tau\) :

Imaginary part of \(\beta\)

\(\phi\) :

Observational angle (angle of contour transformation)

References

  • Alkinidri, M., Hussain, S., Nawaz, R.: Analysis of noise attenuation through soft vibrating barriers: an analytical investigation. AIMS Math. 8(8), 18066–18087 (2023)

    Article  MathSciNet  Google Scholar 

  • Ayub, M., Mann, A.B., Ahmad, M.: Line source and point source scattering of acoustic waves by the junction of transmissive and soft-hard half planes. J. Math. Anal. Appl. 346, 280–295 (2008)

    Article  MathSciNet  Google Scholar 

  • Ayub, M., Naeem, A., Nawaz, R.: Line-source diffraction by a slit in a moving fluid. Can. J. Phys. 87(11), 1139–1149 (2009)

    Article  CAS  ADS  Google Scholar 

  • Ayub, M., Nawaz, R., Naeem, A.: Diffraction of sound waves by a finite barrier in a moving fluid. J. Math. Anal. Appl. 349(1), 245–258 (2009)

    Article  MathSciNet  Google Scholar 

  • Ayub, M., Khan, T.A., Jilani, K.: Effect of cold plasma permittivity on the radiation of the dominant TEM-wave by an impedance loaded parallel-plate waveguide radiator. Math. Meth. Appl. Sci. 39, 134–143 (2016)

    Article  MathSciNet  Google Scholar 

  • Basdemir, H.D.: Magnetic line source diffraction by a conductive half plane in an anisotropic plasma. Contrib. Plasma Phys. 61, e202000103 (2020)

    Article  Google Scholar 

  • Copson, E.T.: Asymptotic Expansions. University Press, Cambridge (1967)

    Google Scholar 

  • De Cupis, P., Burghignoli, P., Gerosa, G., Marziale, M.: Electromagnetic wave scattering by a perfectly conducting wedge in uniform translational motion. J. Electromagn. Waves Appl. 16, 345–364 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  • Dvorak, S.L., Ziolkowski, R.W., Dudley, D.G.: Ultrawide band electromagnetic pulse propagation in a homogeneous cold plasma. Radio Sci. 32, 239–250 (1997)

    Article  ADS  Google Scholar 

  • Eizawa, T., Kobayashi, K.: Wiener–Hopf analysis of the H. polarized plane wave diffraction by a finite sinusoidal grating. Progress Electromagn. Res. 149, 1–13 (2014)

    Article  Google Scholar 

  • Hussain, S., Almalki, Y.: Mathematical analysis of electromagnetic radiations diffracted by symmetric strip with Leontovich conditions in an-isotropic medium. Waves Random Complex Media, 1–19 (2023). https://doi.org/10.1080/17455030.2023.2173949

  • Hussain, S.: Mathematical modeling of electromagnetic radiations incident on a symmetric slit with Leontovich conditions in an-isotropic medium. Waves Random Complex Media, 1–24 (2023). https://doi.org/10.1080/17455030.2023.2180606

  • Hussain, S., Ayub, M.: EM-wave diffraction by a finite plate with Neumann conditions immersed in cold plasma. Plasma Phys. Rep. 46, 402–409 (2020)

    Article  ADS  Google Scholar 

  • Hussain, S., Ayub, M., Rasool, G.: EM-wave diffraction by a finite plate with Dirichlet conditions in the ionosphere of cold plasma. Phys. Wave Phenom. 26, 342–350 (2018)

    Article  ADS  Google Scholar 

  • Hussain, S., Ayub, M., Nawaz, R.: Analysis of high frequency EM-waves diffracted by a finite strip in anisotropic medium. Waves Random Complex Media (2021). https://doi.org/10.1080/17455030.2021.2000670

    Article  Google Scholar 

  • Javaid, A., Ayub, M., Hussain, S.: Diffraction of EM-wave by a finite symmetric plate with Dirichlet conditions in cold plasma. Phys. Wave Phenom. 28, 354–361 (2020)

    Article  ADS  Google Scholar 

  • Javaid, A., Ayub, M., Hussain, S., Haider, S., Khan, G.A.: Diffraction of EM-wave by a slit of finite width with Dirichlet conditions in cold plasma. Phys. Scr. 96, 125511 (2021)

    Article  ADS  Google Scholar 

  • Javaid, A., Ayub, M., Hussain, S., Haider, S.: Diffraction of EM-wave by a finite symmetric plate in cold plasma with Neumann conditions. Opt. Quantum Electron. 54, 263 (2022)

    Article  Google Scholar 

  • Jones, D.S.: The Theory of Electromagnetism. Pergamon Press, London (1964)

    Google Scholar 

  • Jones, D.S.: Aerodynamic sound due to a source near a half plane. J. Inst. Math. Appl. 9, 114–122 (1972)

    Article  Google Scholar 

  • Khan, T.A., Ayub, M., Jilani, K.: E-polarized plane wave diffraction by an impedance loaded parallel-plate waveguide located in cold plasma. Phys. Scr. 89, 095207 (2014)

    Article  ADS  Google Scholar 

  • Kunnz, K.S., Luebbers, R.J.: The Finite Difference Time Domain Method for Electromagnetics. CRC Press (1993)

    Google Scholar 

  • Lawrie, J.B., Abrahams, I.D.: A brief historical perspective of the Wiener–Hopf technique. J. Eng. Math. 59, 351–358 (2007)

    Article  MathSciNet  Google Scholar 

  • Nawaz, R., Ayub, M.: Closed form solution of electromagnetic wave diffraction problem in a homogeneous bi-isotropic medium. Math. Methods Appl. Sci. 38(1), 176–187 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  • Nawaz, R., Naeem, A., Ayub, M., Javaid, A.: Point source diffraction by a slit in a moving fluid. Waves Random Complex Media 24(4), 357–375 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  • Noble, B.: Methods Based on the Wiener–Hopf Technique for the Solution of Partial Differential Equations. Pergamon, London (1958)

    Google Scholar 

  • Nosich, A.I.: Green’s function-dual series approach in wave scattering from combined resonant scatterers. Anal. Numer. Methods Electromagn. Wave Theory (1993). https://cir.nii.ac.jp/crid/1571698600097688704

  • Nosich, A.I.: The method of analytical regularization in wave-scattering and eigenvalue problems: foundations and review of solutions. IEEE Antennas Propagat. Mag. 41, 34–49 (1999)

    Article  ADS  Google Scholar 

  • Tippet, M.K., Ziolkowski, R.W.: A bidirectional wave transformation of the cold plasma equations. J. Math. Phys. 32, 488–492 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  • Umul, Y.Z.: Boundary diffraction wave theory approach to corner diffraction. Opt. Quant. Electron. 51, 375 (2019)

    Article  Google Scholar 

  • Vidmar, R.J.: On the use of atmospheric pressure plasmas as electromagnetic reflectors and absorbers. IEEE Trans. Plasma Sci. 18, 733–741 (1990)

    Article  ADS  Google Scholar 

  • Yamasaki, T., Isono, K., Hinata, T.: Analysis of electromagnetic fields in inhomogeneous media by Fourier series expansion methods–the case of a dielectric constant mixed a positive and negative regions-. IEICE Trans. Electron. 88(12), 2216–2222 (2005)

    Article  ADS  Google Scholar 

  • Yener, S., Serbest, A.H.: Diffraction of plane waves by an impedance half-plane in cold plasma. J. Electromagn. Waves Appl. 16, 995–1005 (2002)

    Article  ADS  Google Scholar 

  • Zheng, J.P., Kobayashi, K.: Combined Wiener–Hopf and perturbation analysis of the H-polarized plane wave diffraction by a semi-infinite parallel-plate waveguide with sinusoidal wall corrugation. Progress Electromagn. Res. B. 13, 203–236 (2009)

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

SH and AJ: Conceptualization, Methodology and Formal analysis, Writing-Original draft preparation. HA: Investigation, RN: Supervision and Writing-Reviewing. MA: Investigation. All authors reviewed the manuscript.

Corresponding author

Correspondence to Rab Nawaz.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

The contents of this manuscript have not been copyrighted or published previously; The contents of this manuscript are not now under consideration for publication elsewhere.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

$$\begin{aligned}{} & \tilde {{\mathcal{F}}}_{l}^{\prime }(\beta ,0)=\frac{1}{2}\left( {\mathcal {F}}_{l}^{\prime } (\beta ,0^{+})-{\mathcal {F}}_{l}^{\prime }(\beta ,0^{-})\right), \end{aligned}$$
(33)
$$\begin{aligned}{} & {} {\mathcal {G}}(\beta )=\frac{\exp [i l(\beta -k_{eff}\cos \theta _{0})]-\exp [-i l(\beta -k_{eff}\cos \theta _{0})]}{\sqrt{2\pi }(\beta -k_{eff}\cos \theta _{0})}, \end{aligned}$$
(34)

Kernel function:

$$\begin{aligned} {\mathcal {K}}(\beta )=\frac{1}{i{\gamma (\beta )}}, \end{aligned}$$
(35)

Factorisation of kernel function:

$$\begin{aligned} {\mathcal {K}}(\beta )=\frac{1}{i{\gamma (\beta )}}={\mathcal {K}}_{+} (\beta ) {\mathcal {K}}_{-} (\beta )\text { with }\gamma (\beta )=\gamma _{+} (\beta )\gamma _{-} (\beta ), \end{aligned}$$
(36)

where \(K_{\pm }(\beta )\) are,

$$\begin{aligned}{} & {} {\mathcal {K}}_{\pm }(\beta )=\frac{\exp (-i{\frac{\pi }{4}})}{\gamma _{\pm }(\beta )}\text { with }\gamma _{\pm }(\beta )=\sqrt{k_{eff}{\pm }\beta }. \end{aligned}$$
(37)
$$\begin{aligned}{} & {} {\mathcal {G}}_{1,2}(\beta )=\frac{\exp ({\mp }i{k_{eff}l\cos \theta _{0}} )}{\beta {\mp }k_{eff}\cos \theta _{0}}\left( \frac{1}{{\mathcal {K}}_{+}(\beta )}-\frac{1}{{\mathcal {K}}_{+}({\pm }k_{eff}\cos \theta _{0})}\right) -\exp ({\pm }{i}k_{eff}l\cos \theta _{0}){\mathcal {R}}_{1,2}(\beta ), \end{aligned}$$
(38)
$$\begin{aligned}{} & {} {\mathcal {C}}_{1,2}={\mathcal {K}}_{+}(k_{eff})\frac{{\mathcal {G}}_{2,1} (k_{eff})+{\mathcal {K}}_{+}(k_{eff}){\mathcal {G}}_{1,2}(k_{eff}){\mathcal {T}} (k_{eff})}{1-{\mathcal {K}}_{+}^{2}(k_{eff}){\mathcal {T}}^{2}(k_{eff})}, \end{aligned}$$
(39)
$$\begin{aligned}{} & {} {\mathcal {R}}_{1,2}(\beta )=\frac{E_{-1}}{2\pi {i}(\beta \mp k_{eff}\cos \theta _{0})}[{\mathcal {W}}_{-1}(-{i}(k_{eff}\pm k_{eff}\cos \theta _{0}))-{\mathcal {W}}_{-1}(-{i}(k_{eff}+\beta ))], \end{aligned}$$
(40)
$$\begin{aligned}{} & {} {\mathcal {T}}(\beta )=\frac{E_{-1}}{2\pi }{\mathcal {W}}_{-1}[-i(k_{eff} +\beta )l],\quad E_{-1}=2\sqrt{\frac{l}{i}}e^{i{k_{eff}+\beta }}, \end{aligned}$$
(41)
$$\begin{aligned}{} & {} {\mathcal {W}}_{n-1/2}(q)=\int \limits _{0}^{\infty }\frac{v^{n}e^{-v}}{v+q}dv=\Gamma (n+1)e^{ \left( \frac{q}{2}\right) } q^{(n-1)/2}{\mathcal {W}}_{-(n+1)/2,n/2}(q), \end{aligned}$$
(42)

where \(q=-i(k_{eff}+\beta )l\), \(n=-\frac{1}{2}\) and \({\mathcal {W}}\) is the Whittaker function.

Appendix B

$$\begin{aligned}{} & {} f_{sep}(-k_{eff}\cos \phi )=\frac{{\mathcal {A}}}{{\mathcal {K}}(-k_{eff}\cos \phi )}\left\{ \begin{array}{c} \frac{{\mathcal {K}}_{+}(-k_{eff}\cos \phi )\exp [-ik_{eff}l(\cos \phi +\cos \theta _{0})]}{{\mathcal {K}}_{+}(k_{eff}\cos \theta _{0})(-k_{eff}\cos \phi -k_{eff}\cos \theta _{0})}\\ -\frac{{\mathcal {K}}_{+}(k_{eff}\cos \phi )\exp [ilk_{eff}(\cos \phi +\cos \theta _{0})]}{{\mathcal {K}}_{+}(-k_{eff}\cos \theta _{0})(-k_{eff}\cos \phi -k_{eff}\cos \theta _{0})} \end{array} \right\}, \end{aligned}$$
(43)
$$\begin{aligned}{} & {} f_{int}(-k_{eff}\cos \phi )=\frac{{\mathcal {A}}}{{\mathcal {K}}(-k_{eff}\cos \phi )}\left\{ \left. \begin{array}{c} \exp (-ik_{eff}l\cos \phi ){\mathcal {K}}_{+}(-k_{eff}\cos \phi )\\ \times {\mathcal {T}}(-k_{eff}\cos \phi ){\mathcal {C}}_{1}\\ -\exp [il(-k_{eff}\cos \phi +k_{eff}\cos \theta _{0})]\\ \times {\mathcal {K}}_{+}(-k_{eff}\cos \phi ){\mathcal {R}}_{1}(-k_{eff}\cos \phi )\\ +{\mathcal {K}}_{-}(-k_{eff}\cos \phi )\exp (ik_{eff}l\cos \phi )\\ \times {\mathcal {T}}(k_{eff}\cos \phi ){\mathcal {C}}_{2}\\ -\exp \left[ -il(-k_{eff}\cos \phi +k_{eff}\cos \theta _{0})\right] \\ \times {\mathcal {K}}_{-}(-k_{eff}\cos \phi ){\mathcal {R}}_{2}(k_{eff}\cos \phi ) \end{array} \right. \right\}. \end{aligned}$$
(44)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, S., Javaid, A., Alahmadi, H. et al. A mathematical study of electromagnetic waves diffraction by a slit in non-thermal plasma. Opt Quant Electron 56, 213 (2024). https://doi.org/10.1007/s11082-023-05730-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05730-8

Keywords

Navigation