Skip to main content
Log in

Speed enhancement of all-optical pseudo random binary sequence (PRBS) generator using microring resonator

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In the present communication, we have designed and simulated an all-optical Pseudo Random Binary Sequence (PRBS) generator using a suitable multiplexing technique that exploits the PRBS decimation and shift-and-add properties for doubling the PRBS speed at a rate of 500 Gb/s without increasing the synchronization frequency of the generator. The PRBS generator comprises of serially connected D flip-flops realized with double waveguide-coupled optical microring resonator (OMRR)-based switches in a pump-probe configuration, OMRR-based 2-input XOR gates for feedback and for creating the necessary PRBS phase-shifted replicas, and OMRR-based 2:1 multiplexer. The expected PRBS doubled speed operation is theoretically validated for 4-bit and 5-bit degree PRBS generator and can be extended in a straightforward manner for any rate multiplication factor or PRBS order with extra OMRR-based D flip-flops and OMRR-based XOR gates as per the desired characteristic polynomial order. The OMRR critical parameters, including radius and coupling coefficient, are optimized against performance metrics through numerical simulation. The selection of these parameters according to the derived specifications could render feasible the practical implementation of the scheme and its exploitation for all-optical signal processing purposes at ultrafast data rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Agazzi, L., et al.: Monolithic integration of erbium-doped amplifiers with silicon-on-insulator waveguides. Opt. Exp. 18(26), 27703–27711 (2010)

    Article  ADS  Google Scholar 

  • Aikawa, Y., Shimizu, S., Uenohara, H.: Demonstration of all-optical divider circuit using SOA-MZI-type XOR gate and feedback loop for forward error detection. J. Lightwave Technol. 29(15), 2259–2266 (2011)

    Article  ADS  Google Scholar 

  • Albores Mejia, A., et al.: 160Gb/s serial line rates in a monolithic optoelectronic multistage interconnection network. In: Proceedings of the 17th Annual IEEE Symposium on High-Performance Interconnects, pp. 157–162 (2009)

  • Arazi, B.: Decimation of m-sequences leading to any desired phase shift. Electron. Lett. 13(7), 213–215 (1970)

  • Bardell, P.H.: Design considerations for parallel pseudorandom pattern generators. J Electron Test. 1, 73–87 (1990)

    Article  Google Scholar 

  • Bardell, P.H.: Discrete logarithms: a parallel pseudorandom pattern generator analysis method. J Electron Test. 3, 17–31 (1992)

    Article  Google Scholar 

  • Bharti, G.K., Rakshit, J.K.: Design and performance analysis of high speed optical binary code converter using micro-ring resonator. Fiber Integr. Opt. 37(2), 103–121 (2018)

    Article  ADS  Google Scholar 

  • Bogaerts, W., et al.: Silicon microring resonators. Las. Photon. Rev. 6(1), 47–73 (2012)

    Article  ADS  Google Scholar 

  • Chamzas, C.C.: Parasitic spectral lines in high speed generation of binary maximum length sequences. IEEE Trans Commun. 26(6), 922–925 (1978)

    Article  Google Scholar 

  • Clark, D.W., Weng, L.-J.: Maximal and near-maximal shift register sequences: efficient event counters and easy discrete logarithms. IEEE Trans Comput. 43(5), 560–567 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Dimitriadou, E., Zoiros, K.E., Chattopadhyay, T., Roy, J.N.: Design of ultrafast all-optical 4-bit parity generator and checker using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer. J. Comput. Electron. 12(3), 481–489 (2013)

    Article  Google Scholar 

  • Gayen, D.K., Chattopadhyay, T., Zoiros, K.E.: All-optical D flip-flop using single quantum-dot semiconductor optical amplifier assisted Mach-Zehnder interferometer. J. Comput. Electron. 14(1), 129–138 (2015)

    Article  Google Scholar 

  • Gayen, D.K., Chattopadhyay, T., Pal, R.K., Roy, J.N.: All-optical prefix tree adder with the help of terahertz optical asymmetric demultiplexer. Chin Opt. Lett. 9(4), 041003 (2011)

  • Glesk, I., Osadola, T.B., Kwong, W.C.: Towards higher scalability of hybrid optical CDMA network. Opt. Quant. Electron. 49(8), 267 (2017)

    Article  Google Scholar 

  • Golomb, S.W.: Shift register sequences, San Francisco. Holden-Day, CA (1967)

    Google Scholar 

  • Hui, R.: Introduction to Fiber-Optic Communications, ch. 10.2. Elsevier (2019)

  • Kim, H.T., Yu, M.: Cascaded ring resonator temperature sensor based with simultaneously enhanced sensitivity and range. Opt. Express 24(9), 9501–9510 (2016)

    Article  ADS  Google Scholar 

  • Kotb, A., Zoiros, K.E., Guo, C.: 320 Gb/s all-optical XOR gate using semiconductor optical amplifier-Mach–Zehnder interferometer and delayed interferometer. Photonic Netw. Commun. 38(1), 177–184 (2019)

    Article  Google Scholar 

  • Kouloumentas, C., Stamatiadis, C., Zakynthinos, P., Avramopoulos, H.: Repetition rate multiplication of pseudorandom bit sequences. IEEE Photon. Technol. Lett. 21(7), 456–458 (2009)

    Article  ADS  Google Scholar 

  • Laskin, E.: On-chip self-test circuit blocks for high-speed applications. MSc. Thesis, 1–67, University of Toronto, Canada (2006)

  • Latawiec, K.J.: New method of generation of shifted linear pseudorandom binary sequences. Proc. IEE 121(8), 905–906 (1974)

    Google Scholar 

  • Li, Y., Zhang, Y., Zhang, L., Poon, A.W.: Silicon and hybrid silicon photonic devices for intra-datacenter applications: state of the art and perspectives. Photon. Res. 3(5), B10–B27 (2015)

    Article  Google Scholar 

  • Li, C.F., Dou, N.: Optical switching in silicon nanowaveguide ring resonators based on Kerr effect and TPA effect. Chinese Phys. Lett. 26(5), 054203 (2009)

  • Little, B.E., Chu, S.T., Haus, H.A., Foresi. J., Laine, J.P.: Microring resonator channel dropping filters, J. Lightw. Technol. 15(6), 998–1005 (1997)

  • Ma, S., Sun, H., Chen, Z., Dutta, N.K.: High speed all-optical PRBS generation based on quantum-dot semiconductor optical amplifiers. Opt. Exp. 17, 18469–18477 (2009)

    Article  ADS  Google Scholar 

  • MacWilliams, F.J., Sloane, N.J.A.: Pseudo-random sequences and arrays. Proc. IEEE.64, 1715–1729 (1976)

  • Mano, M.M., Ciletti, M.D.: Digital Design, 4th ed., Pearson College (2006)

  • Manolatou, C., Lipson, M.: All-optical silicon modulators based on carrier injection by two-photon absorption. J. Light. Technol. 24(3), 1433–1439 (2006)

    Article  ADS  Google Scholar 

  • Murashko, I.A.: A new approach to the design of a fast M-sequence generator. Autom. Control. Comput. Sci. 41(2), 88–92 (2007)

    Article  Google Scholar 

  • O’Reilly, J.J.: An optical technique for generating very high bit-rate m-sequences. Opt. Quant. Electron. 7, 425–427 (1975a)

    Article  Google Scholar 

  • O’Reilly, J.J.: Series-parallel generation of m-sequences. Radio Electron. Eng. 45(4), 171–176 (1975b)

    Article  MathSciNet  Google Scholar 

  • Padmaraju, K., Bergman, K.: Resolving the thermal challenges for silicon microring resonator devices. Nanophotonics 3(4–5), 269–281 (2014)

    Article  Google Scholar 

  • Peterson, R. L., Ziemer, R. E., Borth, D. E.: Introduction to Spread Spectrum Communications. Chapter 3: Binary Shift-Register Sequences for Spread-Spectrum Systems, Prentice Hall, Englewood Cliffs, NJ, (1995)

  • Rakshit, J.K.: Design of micro-ring resonator based 4 × 4 optical router for photonic network applications. Braz. J. Phys. 50(5), 582–593 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  • Rakshit, J.K., Roy, J.N.: Design of all-optical time-division multiplexing scheme with the help of microringresonator. Opt. Appl. 44(1), 39–54 (2014)

    Google Scholar 

  • Rakshit, J.K., Roy, J.N.: Design of all-optical universal shift register using nonlinear microring resonators. J. Comput. Electron. 15(4), 1450–1461 (2016a)

    Article  Google Scholar 

  • Rakshit, J.K., Roy, J.N.: All-optical ultrafast switching in a silicon microring resonator and its application to design multiplexer/demultiplexer, adder/subtractor and comparator circuit. Opt. Appl. 46(4), 517–539 (2016b)

    Google Scholar 

  • Rakshit, J.K., Roy, J.N., Chattopadhyay, T.: A theoretical study of all optical clocked D flip flop using single micro-ring resonator. J. Comput. Electron. 13(1), 278–286 (2014)

    Article  Google Scholar 

  • Rakshit, J.K., Zoiros, K.E., Bharti, G.K.: Proposal for ultrafast all-optical pseudo random binary sequence generator using microring resonator-based switches. J. Comput. Electron. 20(1), 353–367 (2021)

    Article  Google Scholar 

  • Rakshit, J. K.: Design of all optical 1-bit and 2-bit magnitude comparator using micro-ring resonator. In Conference on Lasers and Electro-Optics/Pacific Rim. Opt. Soc. Am. s1744 (2017)

  • Rakshit, J.K., Roy, J.N., Chattopadhyay, T.: All-optical XOR/XNOR logic gate using micro-ring resonators. In: 2012 5th International Conference on Computers and Devices for Communication (CODEC). IEEE, pp. 1–4 (2012)

  • Rendón-Salgado, I., Ramírez-Cruz, E., Guttiérez-Castrejón, R.: All-optical demultiplexing of a 640 Gbit/s OTDM signal using bulk SOA turbo-switched Mach-Zehnder Interferometer with improved differential scheme. Proceedings International Conference on Transparent Optical Networks (ICTON), art. no. 8473990, 1–4 (2018)

  • Sacher, W.D., Poon, J.K.S.: Characteristics of microring resonators with waveguide-resonator coupling modulation. J. Lightwave Technol. 27(17), 3800–3811 (2009)

    Article  ADS  Google Scholar 

  • Saeung, P., Yupapin, P.P.: Generalized analysis of multiple ring resonator filters: modeling by using graphical approach. Optik 119(10), 465–472 (2008)

    Article  ADS  Google Scholar 

  • Sarwate, D.V., Pursley, M.B.: Cross correlation properties of pseudorandom and related sequences. Proc. IEEE. 68(5), 593–619 (1980)

    Article  Google Scholar 

  • Sethi, P., Roy, S.: All-optical ultrafast switching in 2 × 2 Silicon microring resonators and its application to reconfigurable DEMUX/MUX and reversible logic gates. J. Lightw. Technol. 32(12), 2173–2180 (2014)

    Article  Google Scholar 

  • Sun, Z., Wang, Z., Wu, C., Wang, F., Li, Q.: All-optical repetition rate multiplication of pseudorandom bit sequences based on cascaded TOADs. Opt. Commun. 363, 1–6 (2016)

    Article  ADS  Google Scholar 

  • Thapa, S., Zhang, X., Dutta, N.K.: Effects of two-photon absorption on pseudo-random bit sequence operating at high speed. J. Mod. Opt. 66(1), 100–108 (2019)

    Article  ADS  Google Scholar 

  • Tucker, R.S., Eisenstein, G., Korotky, S.K.: Optical time-division multiplexing for very high bit-rate transmission. J. Lightw. Technol. 6(11), 1737–1749 (1988)

    Article  ADS  Google Scholar 

  • Vardakas, J. S., Zoiros, K. E.: Performance investigation of all-optical clock recovery circuit based on Fabry-Pérot filter and SOA-assisted Sagnac switch. Opt. Eng. 46(8), 085005 (2007)

  • Wang, B.C., Glesk, I., Runser, R.J., Prucnal, P.R.: Fast tunable parallel optical delay line. Opt. Exp. 8(11), 599–604 (2001)

    Article  ADS  Google Scholar 

  • Wang, Z., Paez, D., Rahaman, A.I.A.E., Wang, P., Dow, L., Cartledge, J.C., Knights, A.P.: Resonance control of a silicon micro-ring resonator modulator under high-speed operation using the intrinsic defect-mediated photocurrent. Opt. Exp. 25(20), 24827–24836 (2017)

    Article  ADS  Google Scholar 

  • Wang, L.-T., McCluskey, E. J.: Hybrid designs generating maximum-length sequences. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 7(1) 91–99 (1988)

  • Webb, R.P., Yang, X., Manning, R.J., Maxwell, G.D., Poustie, A.J., Lardenois, S., Cotter, D.: All-optical binary pattern recognition at 42 Gb/s. J. Lightwave Technol. 27(13), 2240–2245 (2009)

    Article  ADS  Google Scholar 

  • Weinrichter, H., Surbock, F.: Phase normalised n-sequences with the inphase decimation property {m(k)}= {m(2k). Electron. Lett. 12(22), 590–591 (1976)

    Article  ADS  Google Scholar 

  • Willet, M.: Characteristic m-sequences. Math. Comput. 30(134), 306–311 (1976)

    MathSciNet  Google Scholar 

  • Wu, X., Wang, J., Yilmaz, O.F., Nuccio, S.R., Bogoni, A., Willner, A.E.: Bit-rate-variable and order-switchable optical multiplexing of high-speed pseudorandom bit sequence using optical delays. Opt. Lett. 35(18), 3042–3044 (2010)

    Article  ADS  Google Scholar 

  • Xu, Q., Soref, R.: Reconfigurable optical directed-logic circuits using microresonator-based optical switches. Opt. Exp. 19(6), 5244–5259 (2011)

    Article  ADS  Google Scholar 

  • Yarmolik, V.N., Demidenko, S.N.: Generation of pseudorandom sequences for random testing, John Wiley & Sons Ltd (1988)

  • Zhang, L., et al.: Demonstration of directed XOR/XNOR logic gates using two cascaded microringresonators. Opt. Lett. 35(10), 1620–1622 (2010)

    Article  ADS  Google Scholar 

  • Zhang, X., Li, W., Hu, H., Dutta, N.K.: High-speed all-optical encryption and decryption based on two-photon absorption in semiconductor optical amplifiers. J. Opt. Commun. Netw. 7(4), 276–285 (2015)

  • Zhu, H., Anderson, S., Karfelt, N., Jiang, L., Li, Y., Boeck, R., Yamazaki, H., Wang, M., Kankipati, R., Grzybowski, R.: Low-cost 400 Gbps DR4 silicon photonics transmitter for short-reach datacenter application. Nanomaterials 11(8), 1941 (2021)

    Article  Google Scholar 

  • Zoiros, K.E., Houbavlis, T., Kalyvas, M.: Ultra-high speed all-optical shift registers and their applications in OTDM networks. Opt. Quant. Electron. 36, 1005–1053 (2004)

    Article  Google Scholar 

  • Zoiros, K.E., Papadopoulos, G., Houbavlis, T., Kanellos, G.T.: Theoretical analysis and performance investigation of ultrafast all-optical Boolean XOR gate with semiconductor optical amplifier-assisted sagnac interferometer. Opt. Commun. 258(2), 114–134 (2006)

    Article  ADS  Google Scholar 

  • Zoiros, K.E., Das, M.K., Gayen, D.K., Maity, H.K., Chattopadhyay, T., Roy, J.N.: All-optical pseudorandom binary sequence generator with TOAD-based D flip-flops. Opt. Commun. 284(19), 4297–4306 (2011)

    Article  ADS  Google Scholar 

Download references

Funding

No funding received for this research work.

Author information

Authors and Affiliations

Authors

Contributions

MH—Methodology, implementation, simulation and writing original draft preparation. KEZ—Conceptualization, supervision, reviewing and editing the draft manuscript. TC—Supervision, reviewing and editing the draft manuscript. JKR—Conceptualization, supervision, reviewing and editing the draft manuscript.

Corresponding author

Correspondence to Jayanta Kumar Rakshit.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent to participate

All authors have agreed and given their consent to participate in this research work.

Consent for publication

All authors have agreed and given their consent for the publication of this research paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: Detailed calculation of MRR Through port and Drop port output electric fields

Appendix A: Detailed calculation of MRR Through port and Drop port output electric fields

From Fig. 6 of Sect. 4, the electric fields Era, Erb, Erc, Erd at the point a, b, c and d can be written as

$$E_{ra} = \left( {1 - \gamma } \right)^{1/2} \left[ {j\sqrt {k_{1} } \times E_{i1} + \sqrt {\left( {1 - k_{1} } \right)} \times E_{rd } } \right]$$
(4)
$$E_{rb} = E_{ra} \times \exp \left( { - \propto \times \frac{L}{4}} \right) \times \exp \left( {jk_{n} \times \frac{L}{2}} \right)$$
(5)
$$E_{rc} = \left( {1 - \gamma } \right)^{1/2} \left[ {j\sqrt {k_{2} } \times E_{i2} + \sqrt {\left( {1 - k_{2} } \right)} \times E_{rb} } \right]$$
(6)
$$E_{rd} = E_{rc} \times \exp \left( { - \propto \times \frac{L}{4}} \right) \times \exp \left( {jk_{n} \times \frac{L}{2}} \right)$$
(7)

From Fig. 6, the electric fields at the Through port and Drop port can be written as

$$E_{t} = \left( {1 - \gamma } \right)^{1/2} \left[ {\sqrt {\left( {1 - k_{1} } \right)} \times E_{i1} + j\sqrt {\left( {k_{1} } \right)} \times E_{rd} } \right]$$
(8)
$$E_{d} = \left( {1 - \gamma } \right)^{1/2} \left[ {\sqrt {\left( {1 - k_{2} } \right)} \times E_{i2} + j\sqrt {\left( {k_{2} } \right)} \times E_{rb} } \right]$$
(9)

Replacing Erd from Eq. (7) in Eq. (4) we get

$$E_{ra} = jD\sqrt {k_{1} } .E_{i1} + \sqrt {\left( {1 - k_{1} } \right).} x.{\text{exp}}\left( {j\varphi } \right).E_{rc}$$
(10)

where,\(D = (1 - \gamma )^{1/2}\), \(x = D \times \exp \left( { - \alpha \frac{L}{4}} \right)\), \(\phi = \frac{{k_{n} .L}}{2}\).

Similarly replacing Erb from Eq. (5) in Eq. (6) we get

$$E_{rc} = jD\sqrt {k_{2} } \times E_{i2} + \sqrt {\left( {1 - k_{2} } \right)} \times x \times \exp \left( {j\varphi } \right) \times E_{ra}$$
(11)

Replacing Erc from Eq. (11) in Eq. (10) we get

$$E_{ra} = jD\sqrt {k_{1} } \times E_{i1} + \sqrt {\left( {1 - k_{1} } \right)} \times x \times \exp \left( {j\varphi } \right) \times \left( {jD\sqrt {k_{2} } \times E_{i2} + \sqrt {\left( {1 - k_{2} } \right)} \times x \times \exp \left( {j\varphi } \right) \times E_{ra} } \right)$$
(12)

or in compact form,

$$E_{ra} = \frac{{jD\sqrt {k_{1} } E_{i1} + jD\sqrt {k_{2} } \sqrt {1 - k_{1} } x\exp (j\varphi )E_{i2} }}{{1 - \sqrt {1 - k_{1} } \sqrt {1 - k_{2} } x^{2} \exp^{2} (j\varphi )}}$$
(13)

Similarly, replacing Era from Eq. (10) in Eq. (11) we getor in compact form,

$$E_{rc} = jD\sqrt {k_{2} } \times E_{i2} + \sqrt {\left( {1 - k_{2} } \right)} \times x \times \exp \left( {j\varphi } \right) \times \left( {jD \times E_{i1} + \sqrt {\left( {1 - k_{1} } \right)} \times x \times {\text{exp}}\left( {j\varphi } \right) \times E_{rc} } \right)$$
$$E_{rc} = \frac{{jD\sqrt {k_{2} } E_{i2} + jD\sqrt {k_{1} } \sqrt {1 - k_{2} } x\exp (j\varphi )E_{i1} }}{{1 - \sqrt {1 - k_{1} } \sqrt {1 - k_{2} } x^{2} \exp^{2} (j\varphi )}}$$
(14)

Using Eq. (7), Eq. (8) can be written as

$$E_{t} = D\sqrt {\left( {1 - k_{1} } \right)} \times E_{i1} + j\sqrt {k_{1} } \times x \times \exp \left( {j\varphi } \right) \times E_{rc}$$
(15)

Replacing Erc from Eq. (15) in Eq. (17) we have

$$E_{t} = D\sqrt {\left( {1 - k_{1} } \right)} \times E_{i1} + j\sqrt {k_{1} } \times x \times \exp \left( {j\varphi } \right) \times \left( {\frac{{jD\sqrt {k_{2} } E_{i2} + jD\sqrt {k_{1} } \sqrt {1 - k_{2} x\exp (j\phi )E_{i1} } }}{{1 - \sqrt {1 - k_{1} } \sqrt {1 - k_{2} } x^{2} \exp^{2} (j\phi )}}} \right)$$

or,or,

$$E_{t} = D\sqrt {1 - k_{1} } .E{}_{i1} + \frac{{ - Dk_{1} \sqrt {1 - k_{1} } x^{2} \exp^{2} (j\phi )}}{{1 - \sqrt {1 - k_{1} } \sqrt {1 - k_{2} x^{2} \exp^{2} (j\phi )} }}E_{i1} + \frac{{ - D\sqrt {k_{1} } \sqrt {k_{2} } x.\exp (j\phi )}}{{1 - \sqrt {1 - k_{1} } \sqrt {1 - k_{2} x^{2} \exp^{2} (j\phi )} }}E_{i2}$$
$$E_{t} = \frac{{D\sqrt {1 - k_{1} } - D\sqrt {1 - k_{2} } x^{2} \exp^{2} (j\varphi )}}{{1 - \sqrt {1 - k_{1} } \sqrt {1 - k_{2} } x^{2} \exp^{2} (j\varphi )}}E_{i1} + \frac{{ - D\sqrt {k_{1} } \sqrt {k_{2} } x\exp (j\varphi )}}{{1 - \sqrt {1 - k_{1} } \sqrt {1 - k_{2} } x^{2} \exp^{2} (j\phi )}}E_{i2}$$
(16)

Using Eq. (5), Eq. (9) can be written as

$$E_{d} = D\sqrt {1 - k_{2} } \times E_{i2} + j\sqrt {k_{2} } \times x \times \exp \left( {j\varphi } \right) \times E_{ra}$$
(17)

Replacing Era from Eq. (13) in Eq. (17) we have

$$E_{d} = D\sqrt {1 - k_{2} } \times E_{i2} + j\sqrt {k_{2} } \times x \times \exp \left( {j\varphi } \right) \times \left( {\frac{{jD\sqrt {k_{1} } E_{i1} + jD\sqrt {k_{2} } \sqrt {1 - k_{1} x\exp (j\phi )E_{i2} } }}{{1 - \sqrt {1 - k_{1} } \sqrt {1 - k_{2} } x^{2} \exp^{2} (j\phi )}}} \right)$$

oror

$$E_{d} = D\sqrt {1 - k_{2} } .E{}_{i2} + \frac{{ - Dk_{2} \sqrt {1 - k_{1} } x^{2} \exp^{2} (j\phi )}}{{1 - \sqrt {1 - k_{1} } \sqrt {1 - k_{2} } x^{2} \exp^{2} (j\phi )}}E_{i2} + \frac{{ - D\sqrt {k_{1} } \sqrt {k_{2} } x.\exp (j\phi )}}{{1 - \sqrt {1 - k_{1} } \sqrt {1 - k_{2} } x^{2} \exp^{2} (j\phi )}}E_{i1}$$
$$E_{d} = \frac{{ - D\sqrt {k_{1} } \sqrt {k_{2} } x.\exp (j\phi )}}{{1 - \sqrt {1 - k_{1} } \sqrt {1 - k_{2} } x^{2} \exp^{2} (j\phi )}}E_{i1} + \frac{{D\sqrt {1 - k_{2} } - D\sqrt {1 - k_{1} } x^{2} \exp^{2} (j\phi )}}{{1 - \sqrt {1 - k_{1} } \sqrt {1 - k_{2} } x^{2} \exp^{2} (j\phi )}}E_{i2}$$
(18)

Therefore, Eq. (16) and Eq. (18) represent the expressions for the MRR Through port and Drop port output electric fields.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossain, M., Zoiros, K.E., Chattopadhyay, T. et al. Speed enhancement of all-optical pseudo random binary sequence (PRBS) generator using microring resonator. Opt Quant Electron 53, 670 (2021). https://doi.org/10.1007/s11082-021-03329-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-03329-5

Keywords

Navigation