Skip to main content
Log in

Realization of low confinement loss acetylene gas sensor by using hollow-core photonic bandgap fiber

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A hollow-core photonic bandgap fiber (HC-PBF) with high relative sensitivity and low confinement loss was designed. Some destructive circumstance such as propagation losses and mode interference can disrupt performance of the PBF. By considering optimum size of the hollow-core radius, we were able to improve confinement loss and the relative sensitivity. By optimization of the shape and size of the closest row of air holes to the hollow core, the quality of the mode distribution in the hollow-core was well improved. Simulation results confirm that, at an optimal and reasonable core radius, the relative sensitivity and confinement loss of the proposed gas sensor were improved to 96.5% and 0.11 dB/m, respectively. In addition, in order to better matching of optical power between single mode fiber and HC-PBF, we could reduce the destructive effects of optical mode mismatch, by mode interference suppression. Furthermore, by optimization of fiber structural specifications such as air filling fraction and lattice constant, the PBF was changed to a single-mode waveguide. Considering the operation wavelength 1530 nm which is very close to the acetylene gas absorption wavelength, this fiber is appropriate to be a high sensitivity gas sensor to detect absorbing gases in the middle infrared range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aghaie, K.Z., Digonnet, M.J.F., Fan, S.: Experimental assessment of the accuracy of an advanced photonic-bandgap-fiber model. J. Lightw. Technol. 31(7), 1015–1022 (2013)

    Article  ADS  Google Scholar 

  • Amoosoltani, N., Zarifkar, A., Farmani, A.: Particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithms for a surface plasmon resonance-based gas sensor. J. Comput. Electron. 18, 1354–1364 (2019)

    Article  Google Scholar 

  • Arman, H., Olyaee, S.: Improving the sensitivity of the HC-PBF based gas sensor by optimization of core size and mod interference. Optical Quantum Electron. 52(418), 1–10 (2020)

    Google Scholar 

  • Arman, H., Olyaee, S., Mohebzadeh, A.: Gas sensor based on large hollow-core photonic bandgap fiber. Int. J. Opt. Photonics (IJOP) 9(2), 99–106 (2015)

    Google Scholar 

  • Asaduzzaman, S., Ahmed, K.: Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring. Sens. Bio-Sens. Res. 10, 20–26 (2016)

    Article  Google Scholar 

  • Austin, E., van Brakel, A., Petrovich, M.N., Richardson, D.J.: Fibre optical sensor for C2 H2 gas using gas-filled photonic bandgap fibre reference cell. Sens. Actuators B Chem. 139, 30–34 (2009)

    Article  Google Scholar 

  • Azuelos, P., Girault, P., Lorrain, N., Dumeige, Y., Bodiou, L., Poffo, L., Guendouz, M., Thual, M., Charrier, J.: Optimization of porous silicon waveguide design for micro-ring resonator sensing applications. J. Opt. 20, 085301 (2018)

    Article  ADS  Google Scholar 

  • Chen, S., Shen, L.: Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss. IEEE Photonic Technol. Lett. 19(4), 185–187 (2007)

    Article  ADS  Google Scholar 

  • Chowdhury, S., et al.: Porous shaped photonic crystal fiber with strong confinement field in sensing applications: design and analysis. Sens. Bio-Sens. Res. 13, 63–69 (2017)

    Article  Google Scholar 

  • Cubillas, A.M., Silva-Lopez, M., Lazaro, J.M., Conde, O.M., Petrovich, M.N., Lopez-Higuera, J.M.: Methane detection at 1670-nm band using a hollow-core photonic bandgap fiber and a multiline algorithm. Opt. Express 15(26), 17570–17576 (2007)

    Article  ADS  Google Scholar 

  • Cubillas, A.M., Lazaro, J.M., Silva, M., Conde, O.M., Petrovich, M.N., Lopez, J.M.: Methane sensing at 1300 nm band with hollow-core photonic bandgap fibre as gas cell. Electron. Lett. 44, 403–404 (2008)

    Article  ADS  Google Scholar 

  • De, M., Gangopadhyay, T.K., Singh, V.K.: Prospects of photonic crystal fiber as physical sensor: an overview. Mdpi Sensors 19(3), 1–27 (2019)

    Article  Google Scholar 

  • Filipovic, L., Selberherr, S.: Thermo-electro-mechanical simulation of semiconductor metal oxide gas sensors. MDPI J. Mater. 12, 1–37 (2019)

    Google Scholar 

  • Ghodrati, M., Farmani, A., Mir, A.: Nanoscale sensor-based tunneling carbon nanotube transistor for toxic gases detection: a first-principle study. IEEE Sens. J. 19, 7373–7378 (2019)

    Article  ADS  Google Scholar 

  • Hoo, Y.L., Jin, W., Ho, H.L., Wang, D.N.: Measurement of gas diffusion coefficient using photonic crystal fiber. IEEE Photon. Technol. 15, 1434–1436 (2003)

    Article  ADS  Google Scholar 

  • Hoo, Y.L., Jin, W., Hoo, H.L., Ju, J., Wang, D.N.: Gas diffusion measurement using hollow-core photonic bandgap fiber. Sens. Actuators B Chem. 105, 183–186 (2004)

    Article  Google Scholar 

  • Hoo, Y.L., Jin, W., Xiao, L., Ju, J., Ho, H.L.: Highly sensitive photonic crystal based absorption spectroscopy. Sens. Actuators B Chem. 145, 110–113 (2010)

    Article  Google Scholar 

  • Hu, L., et al.: A hollow-core photonic band-gap fiber based methane sensor system capable of reduced mode interference noise. Infrared Phys. Technol. 97, 101–107 (2019)

    Article  ADS  Google Scholar 

  • Islam, M., Ahmed, K., Sen, S., Chowdhury, S., Paul, B.K., Islam, M.S., Miah, M.B.A., Asaduzzaman, S.: Design and optimization of photonic crystal fiber-based sensor for gas condensate and air pollution monitoring. Photon. Sens. 7(3), 234–245 (2017)

    Article  ADS  Google Scholar 

  • Islama, M.I., et al.: Design of single mode spiral photonic crystal fiber for gas sensing applications. Sens. Bio-Sens. Res. 13, 55–62 (2017)

    Article  Google Scholar 

  • Li, L., Chen, Q., Yuan, Q., Liang, C., Sawaya, K.: Surface-wave suppression band gap and plane-wave reflection phase band of mushroom-like photonic band gap structures. J. Appl. Phys. 19(4), 185–187 (2007)

    Google Scholar 

  • Lopez-Torres, D., Elosua, C., Arregui, F.J.: Optical fiber sensors based on microstructured optical fibers to detect gases and volatile organic compounds—a review. Sensors 20, 2555 (2020)

    Article  ADS  Google Scholar 

  • Lova, P., Manfredi, G., Bastianini, C., Mennucci, C., Buatier de Mongeot, F., Servida, A., Comoretto, D.: Flory–Huggins photonic sensors for the optical assessment of molecular diffusion coefficients in polymers. ACS Appl. Mater. 11(13), 16872–16880 (2019)

    Article  Google Scholar 

  • Mao, C., Huang, B., Wang, Y., Huang, Y., Zhang, L., Shao, Y., Wang, Y.I.: High-sensitivity gas pressure sensor based on hollow-core photonic bandgap fiber Mach–Zehnder interferometer. Opt. Express 26(23), 30108–30116 (2018)

    Article  ADS  Google Scholar 

  • Olyaee, S., Naraghi, A.: Design and optimization of index-guiding photonic crystal fiber gas sensor. Photon. Sens. 3(2), 131–136 (2013)

    Article  ADS  Google Scholar 

  • Olyaee, S., Arman, H., Naraghi, A.: Design, simulation, and optimization of acetylene gas sensor using hollow-core photonic bandgap fiber. Sens. Lett. 13, 1–6 (2015)

    Article  Google Scholar 

  • Painam, B., Kaler, R.S., Kumar, M.: Photonic crystal waveguide biochemical sensor for the approximation of chemical components concentrations. Plasmonics 12(3), 899–904 (2017)

    Article  Google Scholar 

  • Park, J., Lee, S., Kim, S., Oh, K.: Enhancement of chemical sensing capability in a photonic crystal fiber with a hollow high index ring defect at the center. Opt. Exp. 19(3), 1921–1929 (2011)

    Article  ADS  Google Scholar 

  • Portosi, V., Laneve, D., Falconi, M.C., Prudenzano, F.: Advances on photonic crystal fiber sensors and applications. Sensors 19(8), 1–19 (2019)

    Article  Google Scholar 

  • Quintero, S.M.M., Valente, L.C.G., Gomes, M.S.P., Silva, H.G., Souza, B.C., Morikawa, S.R.K.: All-fiber CO2 sensor using hollow core PCF operating in the 2μm Region. J. Sens. 18(12), 1–10 (2018)

    Google Scholar 

  • Ritari, T.: Gas sensing using air-guiding photonic bandgap fiber. Opt. Express 12, 4080–4087 (2004)

    Article  ADS  Google Scholar 

  • Ritari, T., Tuminen, J., Ludvigsen, H.: Gas sensing using air-guiding photonic bandgap fiber. Opt. Express 12, 4081–4087 (2004)

    Article  ADS  Google Scholar 

  • Saitoh, K., Koshiba, M.: Leakage loss and group velocity dispersion in air-core photonic bandgap fibers. Opt. Express 11(23), 3100–3109 (2003)

    Article  ADS  Google Scholar 

  • Saitoh, K., Florous, N.J., Murao, T., Koshiba, M.: Design of photonic band gap fibers with suppressed higher-order modes: towards the development of effectively single mode large hollow-core fiber platforms. Opt. Express 14, 7342–7352 (2006)

    Article  ADS  Google Scholar 

  • Saitoh, K., Florous, N.J., Murao, T., Koshiba, M.: Realistic design of large-hollow core photonic band-gap fibers with suppressed higher order modes and surface modes. Light Technol. 25, 2440–2447 (2007)

    Article  Google Scholar 

  • Sardar, R., Faisal, M.: Methane gas sensor based on microstructured highly sensitive hybrid porous core photonic crystal fiber. J. Sens. Technol. 09(01), 12–26 (2019)

    Article  Google Scholar 

  • Sardar, R., Faisal, M., Ahmed, K.: Design and characterization of rectangular slotted porous core photonic crystal fiber for sensing CO2 gas. Sens. Bio-Sens. Res. 30, 100379 (2020)

    Article  Google Scholar 

  • Svelto, O.: Principles of Lasers, Chapter 4, 5th edn. Springer, Boston (2010)

    Book  Google Scholar 

  • Thapa, R., Knabe, K., Faheem, M., Naweed, A., Weaver, O.L., Corwin, K.L.: Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber. Opt. Lett. 31, 2489–2491 (2006)

    Article  ADS  Google Scholar 

  • Yang, F., Jin, W., Cao, Y., Ho, H., Wang, Y.: Towards high sensitivity gas detection with hollow-core photonic bandgap fibers. Opt. Express 22, 24894–24907 (2014)

    Article  ADS  Google Scholar 

  • Zaky, Z.A., Ahmed, A.M., Shalaby, A.S., Aly, A.H.: Refractive index gas sensor based on the Tamm state in a onedimensional photonic crystal: Theoretical optimization. Sci. Rep. 10, 1–9 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been done in Nano-photonics and Optoelectronics Research Laboratory (NORLab) and the authors would like to thank Shahid Rajaee Teacher Training University for supporting of this research project.

Funding

This work was supported by Shahid Rajaee Teacher Training University (SRTTU).

Author information

Authors and Affiliations

Authors

Contributions

HA designed and simulated the sensor, and drafted the manuscript. SO supervised, reviewed, and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Saeed Olyaee.

Ethics declarations

Competing interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arman, H., Olyaee, S. Realization of low confinement loss acetylene gas sensor by using hollow-core photonic bandgap fiber. Opt Quant Electron 53, 328 (2021). https://doi.org/10.1007/s11082-021-02969-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02969-x

Keywords

Navigation