Skip to main content
Log in

Improving the sensitivity of the HC-PBF based gas sensor by optimization of core size and mode interference suppression

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

A hollow-core photonic bandgap fiber for gas sensing with high sensitivity was designed. Some undesirable parameters like mode interference and propagation losses can deteriorate the performance of PBF. By selecting an accurate and reasonable size of the fiber core, consequently modification the shape and size of the first row of holes surrounding the hollow-core, we could improve light intensity profile in the fiber core. According to the simulation results, at a reasonable core radius the relative sensitivity of gas sensor was improved to 96.57%. In addition, by mode interference suppression, we could minimize the effect of mode mismatch. Furthermore, by optimization of fiber structural parameters like lattice constant and air holes diameter, the PBF was single-mode. Considering the operation wavelength λ = 1.55 µm which is approximately equal to the acetylene gas absorption line, this fiber is suitable to be a high sensitivity gas sensor to detect absorbing gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aghaie, K.Z., Digonnet, M.J.F., Fan, S.: Experimental assessment of the accuracy of an advanced photonic-bandgap-fiber model. J. Lightw. Technol. 31(7), 1015–1022 (2013)

    Article  ADS  Google Scholar 

  • Amoosoltani, N., Zarifkar, A., Farmani, A.: Particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithms for a surface plasmon resonance-based gas sensor. J. Comput. Electron. 18, 1354–1364 (2019)

    Article  Google Scholar 

  • Arman, H., Olyaee, S., Mohebzadeh, A.: Gas sensor based on large hollow-core photonic bandgap fiber. Int. J. Opt. Photonics IJOP 9(2), 99–106 (2015)

    Google Scholar 

  • Asaduzzaman, S., Ahmed, K.: Proposal of a gas sensor with high sensitivity, birefringence and nonlinearity for air pollution monitoring. Sens. Bio-Sens. Res. 10, 20–26 (2016)

    Article  Google Scholar 

  • Austin, E., van Brakel, A., Petrovich, M.N., Richardson, D.J.: Fibre optical sensor for C2H2 gas using gas-filled photonic bandgap fibre reference cell. Sens. Actuators B Chem. 139, 30–34 (2009)

    Article  Google Scholar 

  • Chowdhury, S., Sen, S., Ahmed, K., Paul, B.K., Miah, M.B.A., Asaduzzaman, S., ShadidulIslam, M., IbadulIslam, M.: Porous shaped photonic crystal fiber with strong confinement field in sensing applications: design and analysis. Sens. Bio-Sens. Res. 13, 63–69 (2017)

    Article  Google Scholar 

  • Cubillas, A.M., Silva-Lopez, M., Lazaro, J.M., Conde, O.M., Petrovich, M.N., Lopez-Higuera, J.M.: Methane detection at 1670-nm band using a hollow-core photonic bandgap fiber and a multiline algorithm. Opt. Express 15(26), 17570–17576 (2007)

    Article  ADS  Google Scholar 

  • Filipovic, L., Selberherr, S.: Thermo-Electro-Mechanical simulation of semiconductor metal oxide gas sensors. MDPI J. Mater. 12, 1–37 (2019)

    Google Scholar 

  • Ghodrati, M., Farmani, A., Mir, A.: Nanoscale sensor-based tunneling carbon nanotube transistor for toxic gases detection: a first-principle study. IEEE Sens. J. 19, 7373–7378 (2019)

    Article  ADS  Google Scholar 

  • Hoo, Y.L., Jin, W., Ho, H.L., Wang, D.N.: Evanescent wave gas sensing using microstructure fiber. Opt. Eng. 41(1), 8–9 (2002)

    Article  ADS  Google Scholar 

  • Hoo, Y.L., Jin, W., Ho, H.L., Wang, D.N.: Measurement of gas diffusion coefficient using photonic crystal fiber. IEEE Photon Technol. 15, 1434–1436 (2003)

    Article  ADS  Google Scholar 

  • Hoo, Y.L., Jin, W., Hoo, H.L., Ju, J., Wang, D.N.: Gas diffusion measurement using hollow-core photonic bandgap fiber. Sens. Actuator B Chem. 105, 183–186 (2004)

    Article  Google Scholar 

  • Hoo, Y.L., Jin, W., Xiao, L., Ju, J., Ho, H.L.: Highly sensitive photonic crystal based absorption spectroscopy. Sens. Actuator B 145, 110–113 (2010)

    Article  Google Scholar 

  • Hu, L., Zheng, C., Yao, D., Yu, D., Liu, Z., Zheng, J., Wang, Y., Tittel, F.K.: A hollow-core photonic band-gap fiber based methane sensor system capable of reduced mode interference noise. Infrared Phys. Technol. 97, 101–107 (2019)

    Article  ADS  Google Scholar 

  • Islam, M.I., Ahmed, K., Asaduzzaman, S., Paul, B.K., Bhuiyan, T., Sen, S., Islam, M.S., Chowdhury, S.: Design of single mode spiral photonic crystal fiber for gas sensing applications. Sens. Bio-Sens. Res. 13, 55–62 (2017a)

    Article  Google Scholar 

  • Islam, MdI, Ahmed, K., Sen, S., Chowdhury, S., Paul, B.K., Islam, MdS, Miah, M.B.A., Asaduzzaman, S.: Design and optimization of photonic crystal fiber based sensor for gas condensate and air pollution monitoring. Photonic Sens. 7(3), 234–245 (2017b)

    Article  ADS  Google Scholar 

  • Lopez-Higuera, J.M.: Handbook of Optical Fibre Sensing Technology. Wiley, New York (2002)

    Google Scholar 

  • Mao, C., Huang, B., Wang, Y., Huang, Y., Zhang, L., Shao, Y., Wang, Y.I.: High-sensitivity gas pressure sensor based on hollow-core photonic bandgap fiber Mach-Zehnder interferometer. Opt. Exp. 26(23), 30108–30116 (2018)

    Article  ADS  Google Scholar 

  • Olyaee, S., Arman, H.: Improved gas sensor with air-core photonic bandgap fiber. Front. Optoelectron. 8(3), 314–318 (2015)

    Article  Google Scholar 

  • Olyaee, S., Naraghi, A.: Design and optimization of index-guiding photonic crystal fiber gas sensor. Photonic Sens. 3(2), 131–136 (2013)

    Article  ADS  Google Scholar 

  • Olyaee, S., Naraghi, A., Ahmadi, V.: High sensitivity evanescent-field gas sensor based on modified photonic crystal fiber for gas condensate and air pollution monitoring. Optik 125(1), 596–600 (2014)

    Article  ADS  Google Scholar 

  • Olyaee, S., Arman, H., Naraghi, A.: Design, simulation, and optimization of acetylene gas sensor using hollow-core photonic bandgap fiber. Sens. Lett. 13, 1–6 (2015)

    Article  Google Scholar 

  • Park, J., Lee, S., Kim, S., Oh, K.: Enhancement of chemical sensing capability in a photonic crystal fiber with a hollow high index ring defect at the center. Opt. Express 19(3), 1921–1929 (2011)

    Article  ADS  Google Scholar 

  • Quintero, S.M.M., Valente, L.C.G., Gomes, M.S.P., Silva, H.G., Souza, B.C., Morikawa, S.R.K.: All-Fiber CO2 sensor using hollow core PCF operating in the 2 μm Region. MDPI J. Sens. 18(12), 1–10 (2018)

    Google Scholar 

  • Ritari, T., Tuminen, J., Ludvigsen, H.: Gas sensing using air-guiding photonic bandgap fiber. Opt. Express 12, 4081–4087 (2004)

    ADS  Google Scholar 

  • Saitoh, K., Koshiba, M.: Leakage loss and group velocity dispersion in air-core photonic bandgap fibers. Opt. Express 11(23), 3100–3109 (2003)

    Article  ADS  Google Scholar 

  • Saitoh, K., Florous, N.J., Murao, T., Koshiba, M.: Design of photonic band gap fibers with suppressed higher-order modes: Towards the development of effectively single mode large hollow-core fiber platforms. Opt. Express 14, 7342–7352 (2006)

    Article  ADS  Google Scholar 

  • Saitoh, K., Florous, N.J., Murao, T., Koshiba, M.: Realistic design of large-hollowcore photonic band-gap fibers with suppressed higher order modes and surface modes. Light Technol. 25, 2440–2447 (2007)

    Article  Google Scholar 

  • Svelto, O.: Principles of Lasers, Chapter 4, 5th edn. Springer, Boston (2010)

    Book  Google Scholar 

  • Thapa, R., Knabe, K., Faheem, M., Naweed, A., Weaver, O.L., Corwin, K.L.: Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber. Opt. Lett. 31, 2489–2491 (2006)

    Article  ADS  Google Scholar 

  • Yang, F., Jin, W., Cao, Y., Ho, H., Wang, Y.: Towards high sensitivity gas detection with hollow-core photonic bandgap fibers. Opt. Express 22(11), 24894–24907 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Olyaee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arman, H., Olyaee, S. Improving the sensitivity of the HC-PBF based gas sensor by optimization of core size and mode interference suppression. Opt Quant Electron 52, 418 (2020). https://doi.org/10.1007/s11082-020-02538-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02538-8

Keywords

Navigation