Skip to main content
Log in

Effect of submicron deformations on the transmission of all-solid photonic bandgap fibre

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Waveguide losses in all-solid photonic bandgap fibre are studied numerically using both vectorial mode solver and vectorial beam propagation methods. Confinement loss, including material losses, is comprehensively evaluated for defect modes of hexagonal lattice photonic bandgap fibre. The excitation of the index-guiding modes at the bandgap edges leads to a narrowing of the transmission bands. Submicron deformations of the transverse structure of the fibre lead to a significant reduction in the width of the transmission bands, yet the minimum value of the losses within these bandgaps remains practically unchanged. Longitudinal variation of the fibre profile increases the effective losses by up to tens of dB/m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Argyros, A., Birks, T.A., Leon-Saval, S.G., Cordeiro, C.M.B., Luan, F., Russell, P.St.J: Photonic bandgap with an index step of one percent. Opt. Exp. 13, 309–314 (2005)

    Article  ADS  Google Scholar 

  • Birks, T.A., Luan, F., Pearce, G.J., Wang, A., Knight, J.C., Bird, D.M.: Bend loss in all-solid bandgap fibres. Opt. Exp. 14, 5688–5698 (2006)

    Article  ADS  Google Scholar 

  • Brilland, L., Troles, J., Houizot, P., Désévédavy, F., Coulombier, Q., Renversez, G., Chartier, T., Nguyen, T.N., Adam, J., Traynor, N.: Interfaces impact on the transmission of chalcogenides photonic crystal fibres. J. Ceram. Soc. Jpn. 116, 1024–1027 (2008)

    Article  Google Scholar 

  • Caillaud, C., Renversez, G., Brilland, L., Mechin, D., Calvez, L., Adam, J.-L., Troles, J.: Photonic bandgap propagation in all-solid chalcogenide microstructured optical fibers. Materials 7, 6120–6129 (2014)

    Article  ADS  Google Scholar 

  • de Oliveira, R.E.P., Knight, J.C., Taru, T., de Matos, C.J.S.: Temperature response of an all-solid photonic bandgap fiber for sensing applications. Appl. Opt. 52, 1461–1467 (2013)

    Article  ADS  Google Scholar 

  • Eliseev, M.V., Rozhnev, A.G., Manenkov, A.B.: Guided and leaky modes of complex waveguide structures. J. Lightw. Technol. 23, 2586–2594 (2005)

    Article  ADS  Google Scholar 

  • Guobin, R., Zhi, W., Shuqin, L., Yan, L., Shuisheng, J.: Full-vectorial analysis of complex refractive-index photonic crystal fibers. Opt. Expr. 12, 1126–1135 (2004)

    Article  ADS  Google Scholar 

  • Hadley, G.R.: Wide-angle beam propagation using padé approximant operators. Opt. Lett. 17, 1426–1428 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  • Hill, C., Jha, A.: Development of novel ternary tellurite glasses for high temperature fiber optic mid-IR chemical sensing. J. Non-Crystalline Solids 353, 1372–1376 (2007)

    Article  ADS  Google Scholar 

  • Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK users’ guide: solution of large scale eigenvalue problems with implicitly restarted arnoldi methods. Houston, Rice Univ. (1997) http://www.caam.rice.edu/software/ARPACK/UG/ug.html

  • Li, M.-J., West, J.A., Koch, K.W.: Modeling effects of structural distortions on air-core photonic bandgap fibers. J. Lightwave Technol. 25, 2463–2467 (2007)

    Article  ADS  Google Scholar 

  • Lousteau, J., Scarpignato, G., Athanasiou, G.S., Mura, E., Boetti, N., Olivero, M., Benson, T., Sewell, P., Abrate, S., Milanese, D.: Photonic bandgap confinement in an all-solid tellurite-glass photonic crystal fibre. Opt. Lett. 37, 4922–4924 (2012)

    Article  ADS  Google Scholar 

  • Lægsgaard, J.: Gap formation and guided modes in photonic bandgap fibres with high-index rods. J. Opt. A: Pure Appl. Opt. 6, 798–804 (2004)

    Article  ADS  Google Scholar 

  • Manenkov, A.B.: Orthogonality conditions for leaky modes. Radiophys. Quant. Electron. 48, 348–360 (2005)

    Article  ADS  Google Scholar 

  • Melnikov, L., Khromova, I., Scherbakov, A., Nikishin, N.: Soft-glass hollow-core photonic crystal fibres. Proc. SPIE 5950, 595012-1–595012-9 (2005)

    Google Scholar 

  • Mouawad, O., Amrani, F., Kibler, B., Picot-Clémente, J., Strutynski, C., Fatome, J., Désévédavy, F., Gadret, G., Jules, J.-C., Heintz, O., Lesniewska, E., Smektala, F.: Impact of optical and structural aging in As2S3 microstructured optical fibers on mid-infrared supercontinuum generation. Opt. Exp. 22, 23912–23919 (2014)

    Article  ADS  Google Scholar 

  • Pureur, V., Bouwmans, G., Perrin, M., Quiquempois, Y., Douay, M.: Impact of transversal defects on confinement loss of an all-solid 2-D photonic-bandgap fiber. J. Lightwave Technol. 25, 3589–3596 (2007)

    Article  ADS  Google Scholar 

  • Ren, G., Shum, P., Zhang, L., Yu, X., Tong, W., Luo, J.: Low-loss all-solid photonic bandgap fiber. Opt. Lett. 32, 1023–1025 (2007)

    Article  ADS  Google Scholar 

  • Sakoda, K.: Optical properties of photonic crystals. Springer, Berlin (2001)

    Book  Google Scholar 

  • Saitoh, S., Saitoh, K., Kashiwagi, M., Matsuo, S., Dong, L.: Design optimization of large-mode-area all-solid photonic bandgap fibers for high-power laser applications. J. Lightwave Technol. 32, 440–449 (2014)

    Article  ADS  Google Scholar 

  • Scarmozzino, R., Osgood, R.M.: Comparison of finite-difference and Fourier-transform solutions of the parabolic wave equation with emphasis on integrated-optics applications. J. Opt. Soc. Am. A: 8, 724–731 (1991)

    Article  ADS  Google Scholar 

  • Schmidt, M.A., Granzow, N., Da, N., Peng, M., Wondraczek, L., Russell, P.St.J.: All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers. Opt. Lett. 34, 1946–1948 (2009)

    Article  ADS  Google Scholar 

  • Snopatin, G.E., Churbanov, M.F., Pushkin, A.A., Gerasimenko, V.V., Dianov, E.M., Plotnichenko, V.G.: High purity arsenic-sulfide glasses and fibers with minimum attenuation of 12 dB/km. J. Opt. Adv. Mater. Rapid Commun. 3, 669–671 (2009)

    Google Scholar 

  • Snyder, A.W., Love, J.D.: Optical waveguide theory. Chapman and Hall, London (1983)

    Google Scholar 

  • Thomas, J.W.: Numerical partial differential equations: finite difference methods. Texts in applied mathematics, vol. 22. Springer-Verlag, Berlin, New York (1995)

    Book  Google Scholar 

  • Toupin, P., Brilland, L., Méchin, D., Adam, J.-L., Troles, J.: Optical aging of chalcogenide microstructured optical fibers. J. Lightwave Technol. 32, 2428–2432 (2014)

    Article  Google Scholar 

  • Xue, S.C., Large, M.C.J., Barton, G.W., Tanner, R.I., Poladian, L., Lwin, R.: Role of material properties and drawing conditions in the fabrication of microstructured optical fibers. J. Lightwave Technol. 24, 853–860 (2006)

    Article  ADS  Google Scholar 

  • Vanvincq, O., Kudlinski, A., Bétourné, A., Mussot, A., Quiquempois, Y., Bouwmans, G.: Manipulating the propagation of solitons with solid-core photonic bandgap fibers. Int. J. Opt. 2012, 157319 (2012)

    Article  Google Scholar 

  • Wangüemert-Pérez, J.G., Molina-Fernández, I., Luque-Nieto, M.A.: A novel Fourier based 3D full-vectorial beam propagation method. Opt. Quant. Electron. 36, 285–301 (2004)

    Article  Google Scholar 

  • Yan, P.-G., Zhao, J., Ruan, S.-C., Yu, Y.-Q., Shu, J., Wu, X., Ding, J.F., Wei, H.-F., Luo, J.: Drawing an ultra-low loss all-solid photonic bangap fiber for ytterbium ASE suppression. Microw. Opt. Technol. Lett. 52, 2629–2632 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

A. Konyukhov is grateful for the grant of the Directorate of the Program of International Training Fellowships of the Saratov State University, supported by the Ministry of Education and Science, Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey I. Konyukhov.

Additional information

This article is part of the Topical Collection on Optical Wave and Waveguide Theory and Numerical Modelling 2016.

Guest Edited by Krzysztof Anders, Xuesong Meng, Gregory Morozov, Sendy Phang, and Mariusz Zdanowicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konyukhov, A.I., Romanova, E.A., Benson, T.M. et al. Effect of submicron deformations on the transmission of all-solid photonic bandgap fibre. Opt Quant Electron 48, 544 (2016). https://doi.org/10.1007/s11082-016-0791-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-016-0791-8

Keywords

Navigation