Skip to main content
Log in

IR Tools: a MATLAB package of iterative regularization methods and large-scale test problems

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

This paper describes a new MATLAB software package of iterative regularization methods and test problems for large-scale linear inverse problems. The software package, called IR TOOLS, serves two related purposes: we provide implementations of a range of iterative solvers, including several recently proposed methods that are not available elsewhere, and we provide a set of large-scale test problems in the form of discretizations of 2D linear inverse problems. The solvers include iterative regularization methods where the regularization is due to the semi-convergence of the iterations, Tikhonov-type formulations where the regularization is explicitly formulated in the form of a regularization term, and methods that can impose bound constraints on the computed solutions. All the iterative methods are implemented in a very flexible fashion that allows the problem’s coefficient matrix to be available as a (sparse) matrix, a function handle, or an object. The most basic call to all of the various iterative methods requires only this matrix and the right hand side vector; if the method uses any special stopping criteria, regularization parameters, etc., then default values are set automatically by the code. Moreover, through the use of an optional input structure, the user can also have full control of any of the algorithm parameters. The test problems represent realistic large-scale problems found in image reconstruction and several other applications. Numerical examples illustrate the various algorithms and test problems available in this package.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen, M.S., Hansen, P.C.: Generalized row-action methods for tomographic imaging. Numer. Algorithms 67, 121–144 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrews, H., Hunt, B.: Digital image restoration. Prentice-Hall, Englewood cliffs NJ (1977)

  3. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imag. Sci. 2, 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bertero, M., Boccacci, P.: Introduction to inverse problems in imaging. IOP Publishing Ltd., London (1998)

    Book  MATH  Google Scholar 

  5. Bortolotti, V., Brown, R.J.S., Fantazzini, P., Landi, G., Zama, F.: Uniform penalty inversion of two-dimensional NMR relaxation data. Inverse Prob. 33, 015003 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Buzug, T.M.: Computed tomography. Springer, Berlin (2008)

    Google Scholar 

  7. Calvetti, D., Landi, G., Reichel, L., Sgallari, F.: Non-negativity and iterative methods for ill-posed problems. Inverse Prob. 20, 1747–1758 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Calvetti, D., Lewis, B., Reichel, L.: GMRES-Type methods for inconsistent systems. Linear Algebra Appl. 316, 157–169 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Calvetti, D., Morigi, S., Reichel, L., Sgallari, F.: Tikhonov regularization and the L-curve for large discrete ill-posed problems. J. Comput. Appl. Math. 123, 423–446 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Calvetti, D., Reichel, L., Shuibi, A.: Enriched Krylov subspace methods for ill-posed problems. Lin. Alg. Appl. 362, 257–273 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chung, J.: Numerical approaches for large-scale Ill-posed inverse problems. PhD Thesis, Emory University, Atlanta (2009)

    Google Scholar 

  12. Chung, J., Knepper, S., Nagy, J.G.: Large-scale inverse prob. in imaging. In: Scherzer, O. (ed.) Handbook of mathematical methods in imaging. Springer, Heidelberg (2011)

  13. Chung, J., Nagy, J.G., O’Leary, D.P.: A weighted-GCV method for Lanczos-hybrid regularization. Electron. Trans. Numer. Anal. 28, 149–167 (2008)

    MathSciNet  MATH  Google Scholar 

  14. Dong, Y., Zeng, T.: A convex variational model for restoring blurred images with multiplicative noise. SIAM J. Imag. Sci. 6, 1598–1625 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Elfving, T., Hansen, P.C., Nikazad, T.: Semi-convergence properties of Kaczmarz’s method. Inverse Prob. 30, 055007 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gazzola, S., Nagy, J.G.: Generalized Arnoldi-Tikhonov method for sparse reconstruction. SIAM J. Sci. Comput. 36, B225–B247 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gazzola, S., Novati, P.: Automatic parameter setting for Arnoldi-Tikhonov methods. J. Comput. Appl. Math. 256, 180–195 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gazzola, S., Novati, P., Russo, M.R.: On Krylov projection methods and Tikhonov regularization. Electron. Trans. Numer. Anal. 44, 83–123 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Gazzola, S., Wiaux, Y.: Fast nonnegative least squares through flexible Krylov subspaces. SIAM J. Sci. Comput. 39, A655–A679 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Golub, G.H., Heath, M.T., Wahba, G.: Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 215–223 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  21. Guo, L., Meng, X., Shi, L.: Gridding aeromagnetic data using inverse interpolation. Geophys. J. Int. 189, 1353–1360 (2012)

    Article  Google Scholar 

  22. Hansen, P.C.: Discrete inverse problems: insight and algorithms. SIAM Philadelphia (2010)

  23. Hansen, P.C.: Regularization Tools version 4.0 for Matlab 7.3. Numer. Algorithms 46, 189–194 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hansen, P.C., Jensen, T.K.: Noise propagation in regularizing iterations for image deblurring. Electron. Trans. Numer. Anal. 31, 204–220 (2008)

    MathSciNet  MATH  Google Scholar 

  25. Hansen, P. C., Jørgensen, J. S.: AIR Tools II: Algebraic iterative reconstruction methods, improved implementation. Numer. Algor. 1–31. https://doi.org/10.1007/s11075-017-0430-x (2017)

  26. Hansen, P.C., Nagy, J.G., Tigkos, K.: Rotational image deblurring with sparse matrices. BIT Numer. Math. 54, 649–671 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hansen, P.C., Nagy, J.G., O’Leary, D.P.: Deblurring Images: Matrices, Spectra and Filtering. SIAM, Philadelphia PA (2006)

  28. Kilmer, M.E., Hansen, P.C., Español, M. I.: A projection-based approach to general-form Tikhonov regularization. SIAM. J. Sci. Comput. 29, 315–330 (2007)

    MathSciNet  MATH  Google Scholar 

  29. Lagendijk, R.L., Biemond, J.: Iterative Identification and Restoration of Images. Kluwer Academic Publishers, Boston/Dordrecht/London (1991)

    Book  MATH  Google Scholar 

  30. Min, T., Geng, B., Ren, J.: Inverse estimation of the initial condition for the heat equation. Intl. J. Pure Appl. Math. 82, 581–593 (2013)

    Article  MATH  Google Scholar 

  31. Mitchell, J., Chandrasekera, T.C., Gladden, L.F.: Numerical estimation of relaxation and diffusion distributions in two dimensions. Prog. Nucl. Magn. Reson. Spectrosc. 62, 34–50 (2012)

    Article  Google Scholar 

  32. Nagy, J.G., Palmer, K., Perrone, L.: Iterative methods for image deblurring: a Matlab object oriented approach. Numer. Algorithms 36, 73–93 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Nagy, J.G., Strakoš, Z.: Enforcing nonnegativity in image reconstruction algorithms. In: Wilson, D. C. (Ed.): Mathematical Modeling, Estimation, and Imaging. Proceedings of SPIE 4121 182—190 (2000)

  34. Novati, P., Russo, M.R.: A GCV-based Arnoldi-Tikhonov regularization methods. BIT Numerical Mathematis 54, 501–521 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  35. Roggemann, M.C., Welsh, B.: Imaging through Turbulence. CRC Press, Boca Raton (1996)

    Google Scholar 

  36. Rodríguez, P., Wohlberg, B.: An efficient algorithm for sparse representations with p data fidelity term. Proc. 4th IEEE Andean Technical Conference (ANDESCON) (2008)

  37. Sauer, K., Bouman, C.: A local upyear strategy for iterative reconstruction from projections. IEEE Trans. Signal Proc. 41, 534–548 (1993)

    Article  MATH  Google Scholar 

  38. Vogel, C.R.: Computational methods for inverse problems. SIAM Philadelphia (2002)

  39. Zhdanov, M.: Geophysical Inverse Theory and Regularization Problems. Elsevier, Amsterdam (2002)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to Julianne Chung for providing an implementation of HyBR, which forms the basis of our IRhybrid_lsqr function. For further details, see [11, 13] and http://www.math.vt.edu/people/jmchung/hybr.html. We also thank Germana Landi for providing insight about the NMR relaxometry problem.

The satellite image in our package, shown in Fig. 1, is a test problem that originated from the US Air Force Phillips Laboratory, Lasers and Imaging Directorate, Kirtland Air Force Base, New Mexico. The image is from a computer simulation of a field experiment showing a satellite as taken from a ground based telescope. This data has been used widely in the literature for testing algorithms for ill-posed image restoration problems; see, for example [35].

Our package also includes a picture of NASA’s Hubble Space Telescope as shown in Fig. 6. The picture is in the public domain and can be obtained from https://www.nasa.gov/mission_pages/hubble/story/index.html.

Funding

This work received funding from Advanced Grant No. 291405 from the European Research Council and US National Science Foundation under grant no. DMS-1522760.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Gazzola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gazzola, S., Hansen, P.C. & Nagy, J.G. IR Tools: a MATLAB package of iterative regularization methods and large-scale test problems. Numer Algor 81, 773–811 (2019). https://doi.org/10.1007/s11075-018-0570-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-018-0570-7

Keywords

Mathematics Subject Classification (2010)

Navigation