Skip to main content
Log in

Generalized row-action methods for tomographic imaging

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Row-action methods play an important role in tomographic image reconstruction. Many such methods can be viewed as incremental gradient methods for minimizing a sum of a large number of convex functions, and despite their relatively poor global rate of convergence, these methods often exhibit fast initial convergence which is desirable in applications where a low-accuracy solution is acceptable. In this paper, we propose relaxed variants of a class of incremental proximal gradient methods, and these variants generalize many existing row-action methods for tomographic imaging. Moreover, they allow us to derive new incremental algorithms for tomographic imaging that incorporate different types of prior information via regularization. We demonstrate the efficacy of the approach with some numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert, A.: Regression and the Moore-Penrose Pseudo Inverse. Academic, New York (1972)

    Google Scholar 

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Becker, S., Bobin, J., Candès, E.: NESTA: a fast and accurate first-order method for sparse recovery. SIAM J. Imaging Sci. 4(1), 1–39 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bertero, M., Boccacci, P.: Introduction to Inverse Problems in Imaging. Institute of Physics Publishing, Bristol (1998)

    Book  MATH  Google Scholar 

  5. Bertsekas, D.P.: A new class of incremental gradient methods for least squares problems. SIAM J. Optim. 7(4), 913–926 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bertsekas, D.P.: Nonlinear Programming, 2nd edn. Athena Scientific, Nashua (1999)

    Google Scholar 

  7. Bertsekas, D.P.: Incremental gradient, subgradient, and proximal methods for convex optimization: A survey. In: Sra, S., Nowozin, S., Wright, S.J. (eds.) Optimization for Machine Learning, pp. 85–119. MIT Press, Cambridge, MA (2011)MIT Press, Cambridge, MA (2011)

  8. Bertsekas, D.P.: Incremental proximal methods for large scale convex optimization. Math. Program. 129, 163–195 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Blatt, D., Hero, A., Gauchman, H.: A convergent incremental gradient method with a constant step size. SIAM J. Optim. 18(1), 29–51 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Censor, Y., Davidi, R., Herman, G.T.: Perturbation resilience and superiorization of iterative algorithms. Inverse Probl. 26(6), 065,008 (2010)

    Google Scholar 

  11. Censor, Y., Eggermont, P., Gordon, D.: Strong underrelaxation in Kaczmarz’s method for inconsistent systems. Numer. Math. 41(1), 83–92 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chambolle, A., De Vore, R.A., Lee, N.Y., Lucier, B.J.: Nonlinear wavelet image processing: variational problems, compression, and noise removal through wavelet shrinkage. IEEE Trans. Image Process. 7(3), 319–335 (1998)

    Google Scholar 

  13. Chambolle, A., Pock, T.: A first-order primal-dual algorithms for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: Bauschke, H., Burachik, R., Combettes, P., Elser, V., Luke, D. (eds.) Fixed-Point Algorithms for Inverse Problems in Science and Engineering, pp. 185–212. Springer, New York, NY (2011)

  15. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MATH  Google Scholar 

  16. Davidi, R., Herman, G.T., Censor, Y.: Perturbation-resilient block-iterative projection methods with application to image reconstruction from projections. Int. Trans. Oper. Res. 16(4), 505–524 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dielman, T.E.: Least absolute value regression: Recent contributions. J. Stat. Comput. Simul. 75(4), 263–286 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Elfving, T.: Block-iterative methods for consistent and inconsistent linear equations. Numer. Math. 35, 1–12 (1980)

    Google Scholar 

  19. Elfving, T., Hansen, P.C., Nikazad, T.: Semiconvergence and relaxation parameters for projected sirt algorithms. SIAM J. Sci. Comput. 34(4), A2000–A2017 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. Elfving, T., Hansen, P.C., Nikazad, T.: Semi-convergence properties of Kaczmarz’s method. Submitted to Inverse Problems (2013)

  21. Elfving, T., Nikazad, T., Popa, C.: A class of iterative methods: Semi-convergence, stopping rules, inconsistency, and constraining. In: Censor, Y., Jiang, M., Wang, G. (eds.) Biomedical Mathematics: Promising Directions in Imaging, Therapy Planning, and Inverse Problems. Medical Physics Publishing, Madison (2010)

  22. Friedlander, M., Schmidt, M.: Hybrid deterministic-stochastic methods for data fitting. SIAM J. Sci. Comput. 34(3), A1380–A1405 (2012)

    Google Scholar 

  23. Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (ART) for threedimensional electron microscopy and X-ray photography. J. Theor. Biol. 29(3), 471–481 (1970)

    Article  Google Scholar 

  24. Hansen, P.C., Saxild-Hansen, M.: AIR Tools—a MATLAB package of algebraic iterative reconstruction methods. J. Comput. Appl. Math. 236(8), 2167–2178 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Herman, G.T.: Fundamentals of Computerized Tomography: Image Reconstruction from Projections, 2nd edn. Springer, New York (2009)

  26. Herman, G.T., Meyer, L.B.: Algebraic reconstruction techniques can be made computationally efficient. IEEE Trans. Med. Imaging 12, 600–609 (1993)

    Google Scholar 

  27. Jiang, M., Wang, G.: Convergence studies on iterative algorithms for image reconstruction. IEEE Trans. Med. Imaging 22(5), 569–579 (2003)

    Article  Google Scholar 

  28. Kaczmarz, S.: Angenäherte auflösung von systemen linearer gleichungen. Bulletin International de l’Académie Polonaise des Sciences et des Lettres 35, 355–357 (1937)

  29. Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Revue Franc¸aise d’Informatique et de Recherche Op’erationnelle 4(3), 154–158 (1970)

  30. Martinet, B.: Algorithmes pour la resolution de problems d’optimisation et de minimax. Ph.D. thesis (1972)

  31. Moreau, J.J.: Proximité et dualité dans un espace hilbertien. Bull. Math. Soc. France 93, 273–299 (1965)

    Google Scholar 

  32. Mueller, J., Siltanen, S.: Linear and Nonlinear Inverse Problems with Practical Applications. SIAM, Philadelphia, PA (2012)

    Book  MATH  Google Scholar 

  33. Natterer, F.: The Mathematics of Computerized Tomography. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  34. Nesterov, Y.: Introductory Lectures on Convex Optimization. Kluwer Academic Publishers, Dordrecht (2004)

    Book  MATH  Google Scholar 

  35. Recht, B., Re, C.: Toward a noncommutative arithmetic-geometric mean inequality: conjectures, casestudies, and consequences. In: Proceedings of the 25th Annual Conference on Learning Theory (2012)

  36. Rockafellar, R.T.: Convex Analysis, 2nd edn. Princeton University Press, Princeton (1970)

  37. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    Google Scholar 

  38. Rudin, L., Osher, S.J., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D 60, 259–268 (1992)

    Google Scholar 

  39. Sidky, E.Y., Pan, X.: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys. Med. Biol. 53(17), 4777 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Christian Hansen.

Additional information

This work is part of the project High-Definition Tomography and it is supported by Grant No. ERC-2011-ADG 20110209 from the European Research Council.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, M.S., Hansen, P.C. Generalized row-action methods for tomographic imaging. Numer Algor 67, 121–144 (2014). https://doi.org/10.1007/s11075-013-9778-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-013-9778-8

Keywords

Mathematics Subject Classifications (2010)

Navigation