Skip to main content
Log in

Rotational image deblurring with sparse matrices

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

We describe iterative deblurring algorithms that can handle blur caused by a rotation along an arbitrary axis (including the common case of pure rotation). Our algorithms use a sparse-matrix representation of the blurring operation, which allows us to easily handle several different boundary conditions. We also include robust stopping rules for the iterations. The performance of our algorithms is illustrated with examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bardsley, J.M.: Stopping rules for a nonnegatively constrained iterative method for ill-posed Poisson imaging problems. BIT 48, 651–664 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bardsley, J.M., Merikoski, J.K., Vio, R.: The stabilizing properties of nonnegativity constraints in least-squares image reconstruction. Int. J. Pure Appl. Math. 43, 95–109 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Bardsley, J.M., Nagy, J.G.: Covariance-preconditioned iterative methods for nonnegatively constrained astronomical imaging. SIAM J. Matrix Anal. Appl. 27, 1184–1197 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Ezra, M., Nayar, S.K.: Motion based motion deblurring. IEEE Trans. Pattern Anal. Mach. Int. 26(6), 689–698 (2004)

    Article  Google Scholar 

  5. Boracchi, G., Caglioti, V., Danese, A.: Estimating camera rotation parameters from a blurred image. In: Proceedings of the 3rd International Conference on Computer Vision Theory and Applications (VISAPP 2008), Funchal (2008)

  6. Brianzi, P., Di Bendetto, F., Estatico, C.: Improvement of space-invariant image deblurring by preconditioned Landweber iterations. SIAM J. Sci. Comput. 30, 1430–1458 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dai, S., Wu, Y.: Motion from blur. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

  8. Davis, T.A.: Direct Methods for Sparse Linear Systems. SIAM, Philadelphia (2006)

    Book  MATH  Google Scholar 

  9. Elfving, T., Hansen, P.C., Nikazad, T.: Semi-convergence and relaxation parameters for projected SIRT algorithms. SIAM J. Sci. Comp. 34, A2000–A2017 (2012)

    Google Scholar 

  10. Estatico, C., Di Bendetto, F.: Shift-invariant approximations of structured shift-variant blurring matrices. Numer. Algorithms 62, 615–635 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Faber, T.L., Raghunath, N., Tudorascu, D., Votaw, J.R.: Motion correction of PET brain images through deconvolution: I. Theoretical development and analysis in software simulations. Phys. Med. Biol. 54(3), 797–811 (2009)

    Article  Google Scholar 

  12. Fan, Y.W., Nagy, J.G.: Synthetic boundary conditions for image deblurring. Linear Algebra Appl. 434, 2244–2268 (2010)

    Article  MathSciNet  Google Scholar 

  13. Girard, A.: A fast Monte-Carlo cross-validation procedure for large least squares problems with noisy data. Numerische Mathematik 56, 1–23 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hansen, P.C.: Discrete Inverse Problems: Insight and Algorithms. SIAM, Philadelphia (2010)

    Book  Google Scholar 

  15. Hansen, P.C., Kilmer, M.E., Kjeldsen, R.H.: Exploiting residual information in the parameter choice for discrete ill-posed problems. BIT 46, 41–59 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hansen, P.C., Nagy, J.G., O’Leary, D.P.: Deblurring Images: Matrices, Spectra, and Filtering. SIAM, Philadelphia (2006)

    Book  Google Scholar 

  17. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, New York (2003)

    Google Scholar 

  18. Hutchinson, M.: A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. Commun. Stat. Simul. Comput. 18, 1059–1076 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kang, S.K., Min, J.H., Paik, J.K.: Segmentation-based spatially adaptive motion blur removal and its application to surveillance systems. In: Proceedings of the International Conference Image Processing, vol. 1, pp. 245–248 (2001)

  20. Kaufman, L.: Maximum likelihood, least squares, and penalized least squares for PET. IEEE Trans. Med. Imaging 12, 200–214 (1993)

    Article  Google Scholar 

  21. Kelley, C.T.: Iterative Methods for Optimization. SIAM, Philadelphia (1999)

    Book  MATH  Google Scholar 

  22. Nagy, J.G., O’Leary, D.P.: Restoring images degraded by spatially variant blur. SIAM J. Sci. Comput. 19(4), 1063–1082 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Nagy, J.G., Palmer, K.: Steepest descent, cg, and iterative regularization of ill-posed problems. BIT Numer. Math. 43(5), 1003–1017 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nagy, J.G., Strakoš, Z.: Enforcing nonnegativity in image reconstruction algorithms. In: Wilson, D.C., et al. (eds.) Proceedings of SPIE. Mathematical modeling, estimation, and imaging, vol. 4121, pp. 182–190. (2000). doi:10.1117/12.402439

  25. Nocedal, J., Wright, S.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  26. Perry, K., Reeves, S.: A practical stopping rule for iterative signal restoration. IEEE Trans. Signal Proces. 42(7), 1829–1833 (1994)

    Article  Google Scholar 

  27. Piana, M., Bertero, M.: Projected Landweber method and preconditioning. Inverse Probl. 13, 441–463 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Raghunath, N., Faber, T.L., Suryanarayanan, S., Votaw, J.R.: Motion correction of PET brain images through deconvolution: II. Practical implementation and algorithm optimization. Phys. Med. Biol. 54(3), 813–829 (2009)

    Article  Google Scholar 

  29. Reeves, S.J.: Generalized cross-validation as a stopping rule for the Richardson–Lucy algorithm. Int. J. Imaging Syst. Technol. 6(4), 387–391 (1995)

    Article  MathSciNet  Google Scholar 

  30. Reeves, S.J.: Fast image restoration without boundary artifacts. IEEE Trans. Image Process. 14, 1448–1453 (2005)

    Article  Google Scholar 

  31. Reichel, L., Rodriguez, G.: Old and new parameter choice rules for discrete ill-posed problems. Numer. Algorithms 63, 65–87 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ribaric, S., Milani, M., Kalafatic, Z.: Restoration of images blurred by circular motion. In: Proceedings of the First International Workshop on Image and Signal Processing and Analysis (IWISPA 2000), pp. 53–60. IEEE (2000)

  33. Rust, B.W., O’Leary, D.P.: Residual periodograms for choosing regularization parameters for ill-posed problems. Inverse Probl. 24, 034005 (2008). doi:10.1088/0266-5611/24/3/034005

    Article  MathSciNet  Google Scholar 

  34. Sawchuk, A.A.: Space-variant image motion degradation and restoration. Proc. IEEE 60, 854–861 (1972)

    Article  Google Scholar 

  35. Sawchuk, A.A.: Space-variant image restoration by coordinate transformations. J. Opt. Soc. Am. 64, 138–144 (1974)

    Article  Google Scholar 

  36. Serra-Capizzano, S.: A note on antireflective boundary conditions and fast deblurring models. SIAM J. Sci. Comput. 25(4), 1307–1325 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. (SIGGRAPH 2008) 27(3) (2008). Article 73. doi:10.1145/1399504.1360672

  38. Shan, Q., Xiong, W., Jia, J.: Rotational motion deblurring of a rigid object from a single image. In: Proceedings of the 11th International Conference on Computer Vision (ICCV 2007), pp. 1–8. IEEE (2007)

  39. Tai, Y.W., Tan, P., Brown, M.: Richardson–Lucy deblurring for scenes under a projective motion path. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1603–1618 (2011)

    Article  Google Scholar 

  40. Trussell, H.J., Fogel, S.: Identification and restoration of spatially variant motion blurs in sequential images. IEEE Trans. Image Process. 1, 123–126 (1992)

    Article  Google Scholar 

  41. Tull, D.L., Katsaggelos, A.K.: Iterative restoration of fast-moving objects in dynamic image sequences. Opt. Eng. 35(12), 3460–3469 (1996)

    Article  Google Scholar 

  42. Vogel, C.R.: Computational Methods for Inverse Problems. SIAM, Philadelphia (2002)

    Book  MATH  Google Scholar 

  43. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  44. Whyte, O., Sivic, J., Zisserman, A., Ponce, J.: Non-uniform deblurring for shaken images. Int. J. Comput. Vis. 98, 168–186 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Henrik Aanæs for his invaluable help with the geometric aspects, and John Bardsley for his help with the implementation of the randomized GCV method.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Per Christian Hansen.

Additional information

Communicated by Rosemary Renaut.

This work was supported by Grant No. 274-07-0065 from the Danish Research Council for Technology and Production Sciences, Grant No. DMS-1115627 from the US National Science Foundation, and Grant No. AF9550-12-1-0084 from the US Air Force Office of Scientific Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hansen, P.C., Nagy, J.G. & Tigkos, K. Rotational image deblurring with sparse matrices. Bit Numer Math 54, 649–671 (2014). https://doi.org/10.1007/s10543-013-0464-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-013-0464-y

Keywords

Mathematics Subject Classification (2010)

Navigation