Skip to main content
Log in

On the computation of a truncated SVD of a large linear discrete ill-posed problem

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The singular value decomposition is commonly used to solve linear discrete ill-posed problems of small to moderate size. This decomposition not only can be applied to determine an approximate solution but also provides insight into properties of the problem. However, large-scale problems generally are not solved with the aid of the singular value decomposition, because its computation is considered too expensive. This paper shows that a truncated singular value decomposition, made up of a few of the largest singular values and associated right and left singular vectors, of the matrix of a large-scale linear discrete ill-posed problems can be computed quite inexpensively by an implicitly restarted Golub–Kahan bidiagonalization method. Similarly, for large symmetric discrete ill-posed problems a truncated eigendecomposition can be computed inexpensively by an implicitly restarted symmetric Lanczos method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abdel-Rehim, A. M., Morgan, R. B., Wilcox, W.: Improved seed methods for symmetric positive definite linear equations with multiple right-hand sides. Numer. Linear Algebra Appl. 21, 453–471 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baart, M. L.: The use of auto-correlation for pseudo-rank determination in noisy ill-conditioned linear least-squares problems. IMA J. Numer. Anal. 2, 241–247 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baglama, J., Calvetti, D., Reichel, L.: Irbl: An implicitly restarted block Lanczos method for large-scale Hermitian eigenproblems. SIAM J. Sci. Comput. 24, 1650–1677 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Baglama, J., Calvetti, D., Reichel, L.: Algorithm 827: irbleigs: a MATLAB program for computing a few eigenpairs of a large sparse Hermitian matrix. ACM Trans. Math. Software 29, 337–348 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baglama, J., Reichel, L.: Augmented implicitly restarted Lanczos bidiagonalization methods. SIAM J. Sci. Comput. 27, 19–42 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baglama, J., Reichel, L.: Restarted block Lanczos bidiagonalization methods. Numer. Algorithms 43, 251–272 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baglama, J., Reichel, L.: An implicitly restarted block Lanczos bidiagonalization method using Leja shifts. BIT Numer. Math. 53, 285–310 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Baglama, J., Reichel, L., Lewis, B.: irbla: Fast partial SVD by implicitly restarted Lanczos bidiagonalization. R package, version 2.0.0; see https://cran.r-project.org/package=irlba

  9. Bai, Z.-Z., Buccini, A., Hayami, K., Reichel, L., Yin, J.-F., Zheng, N.: A modulus-based iterative method for constrained Tikhonov regularization. J. Comput. Appl. Math. in press

  10. Björck, Å: Numerical Methods in Matrix Computation. Springer, New York (2015)

    Book  MATH  Google Scholar 

  11. Breuer, A.: New filtering strategies for implicitly restarted Lanczos iteration. Electron. Trans. Numer. Anal. 45, 16–32 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Calvetti, D., Reichel, L.: Tikhonov regularization of large linear problems. BIT 43, 263–283 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Calvetti, D., Reichel, L., Sorensen, D. C.: An implicitly restarted Lanczos method for large symmetric eigenvalue problems. Electron. Trans. Numer. Anal. 2, 1–21 (1994)

    MathSciNet  MATH  Google Scholar 

  14. Dykes, L., Reichel, L.: A family of range restricted iterative methods for linear discrete ill-posed problems. Dolomites Research Notes on Approximation 6, 27–36 (2013)

    MATH  Google Scholar 

  15. Engl, H. W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)

    Book  MATH  Google Scholar 

  16. Fenu, C., Reichel, L., Rodriguez, G.: GCV For Tikhonov regularization via global Golub–Kahan decomposition. Numer. Linear Algebra Appl. 23, 467–484 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fenu, C., Reichel, L., Rodriguez, G., Sadok, H.: GCV for Tikhonov regularization by partial SVD. Submitted for publication

  18. Fox, L., Goodwin, E. T.: The numerical solution of non-singular linear integral equations. Philos. Trans. Roy. Soc. Lond. Ser. A, Math. Phys. Eng. Sci. 245:902, 501–534 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gazzola, S., Novati, P., Russo, M. R.: On Krylov projection methods and Tikhonov regularization method. Electron. Trans. Numer. Anal. 44, 83–123 (2015)

  20. Gazzola, S., Onunwor, E., Reichel, L., Rodriguez, G.: On the Lanczos and Golub–Kahan reduction methods applied to discrete ill-posed problems. Numer. Linear Algebra Appl. 23, 187–204 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Golub, G. H., Van Loan, C. F.: Matrix Computations, 4th ed. Johns Hopkins University Press, Baltimore (2013)

  22. Hanke, M.: Conjugate Gradient Type Methods for Ill-Posed Problems. Longman, Harlow (1995)

    MATH  Google Scholar 

  23. Hansen, P. C.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  24. Hansen, P. C.: Regularization tools version 4.0 for Matlab 7.3. Numer. Algorithms 46, 189–194 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jia, Z., Niu, D.: A refined harmonic Lanczos bidiagonalization method and an implicitly restarted algorithm for computing the smallest singular triplets of large matrices. SIAM J. Sci. Comput. 32, 714–744 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kindermann, S.: Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems. Electron. Trans. Numer. Anal. 38, 233–257 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Martin, D. R., Reichel, L.: Minimization of functionals on the solution of a large-scale discrete ill-posed problem. BIT Numer. Math. 53, 153–173 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Morikuni, K., Hayami, K.: Convergence of inner-iteration GMRES methods for rank-deficient least squares problems. SIAM J. Matrix Anal. Appl. 36, 225–250 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Morikuni, K., Reichel, L., Hayami, K.: FGMRES for linear discrete ill-posed problems. Appl. Numer. Math. 75, 175–187 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Neuman, A., Reichel, L., Sadok, H.: Implementations of range restricted iterative methods for linear discrete ill-posed problems. Linear Algebra Appl. 436, 3974–3990 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Noschese, S., Reichel, L.: A modified TSVD method for discrete ill-posed problems. Numer. Linear Algebra Appl. 21, 813–822 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. O’Leary, D. P., Simmons, J. A.: A bidiagonalization-regularization procedure for large scale discretizations of ill-posed problems. SIAM J. Sci. Statist. Comput. 2, 474–489 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  33. Phillips, D. L.: A technique for the numerical solution of certain integral equations of the first kind. J. ACM 9, 84–97 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  34. Reichel, L., Rodriguez, G.: Old and new parameter choice rules for discrete ill-posed problems. Numer. Algorithms 63, 65–87 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Saad, Y.: On the Lanczos method for solving symmetric linear systems with several right-hand sides. Math. Comp. 48, 651–662 (1987)

    MathSciNet  MATH  Google Scholar 

  36. Saad, Y.: Numerical Methods for Large Eigenvalue Problems, Revised Edition. SIAM, Philadelphia (2011)

    Book  MATH  Google Scholar 

  37. Shaw Jr., C. B.: Improvements of the resolution of an instrument by numerical solution of an integral equation. J. Math. Anal. Appl. 37, 83–112 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  38. Soodhalter, K. M.: Two recursive GMRES-type methods for shifted linear systems with general preconditioning. Electron. Trans. Numer. Anal. 45, 499–523 (2016)

    MathSciNet  MATH  Google Scholar 

  39. Sorensen, D. C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Appl. 13, 357–385 (1992)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Reichel.

Additional information

Dedicated to Ken Hayami on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onunwor, E., Reichel, L. On the computation of a truncated SVD of a large linear discrete ill-posed problem. Numer Algor 75, 359–380 (2017). https://doi.org/10.1007/s11075-016-0259-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-016-0259-8

Keywords

Navigation