Skip to main content
Log in

Restarted block Lanczos bidiagonalization methods

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

The problem of computing a few of the largest or smallest singular values and associated singular vectors of a large matrix arises in many applications. This paper describes restarted block Lanczos bidiagonalization methods based on augmentation of Ritz vectors or harmonic Ritz vectors by block Krylov subspaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baglama, J., Calvetti, D., Reichel, L.: IRBL: An implicitly restarted block Lanczos method for large-scale Hermitian eigenproblems. SIAM J. Sci. Comput. 24, 1650–1677 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baglama, J., Reichel, L.: Augmented implicitly restarted Lanczos bidiagonalization methods. SIAM J. Sci. Comput. 27, 19–42 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berry, M.W., Dumais, S.T., O’Brien, G.W.: Using linear algebra for intelligent information retrieval. SIAM Rev. 37, 573–595 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia, PA (1996)

    MATH  Google Scholar 

  5. Björck, Å., Grimme, E., Van Dooren, P.: An implicit shift bidiagonalization algorithm for ill-posed systems. BIT 34, 510–534 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Golub, G.H., Luk, F.T., Overton, M.L.: A block Lanczos method for computing the singular values and corresponding vectors of a matrix. ACM Trans. Math. Softw. 7, 149–169 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  7. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd ed. Johns Hopkins University Press, Baltimore, MD (1996)

    MATH  Google Scholar 

  8. Hochstenbach, M.E.: A Jacobi–Davidson type SVD method. SIAM J. Sci. Comput. 23, 606–628 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hochstenbach, M.E.: Harmonic and refined extraction methods for the singular value problem, with applications in least-squares problems. BIT 44, 721–754 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jia, Z., Niu, D.: An implicitly restarted refined bidiagonalization Lanczos method for computing a partial singular value decomposition. SIAM J. Matrix Anal. Appl. 25, 246–265 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kokiopoulou, E., Bekas, C., Gallopoulos, E.: Computing smallest singular triplets with implicitly restarted Lanczos bidiagonalization. Appl. Numer. Math. 49, 39–61 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lehoucq, R.B.: Implicitly restarted Arnoldi methods and subspace iteration. SIAM J. Matrix Anal. Appl. 23, 551–562 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Luk, F.T., Qiao, S.: Rank-revealing decomposition of symmetric Toeplitz matrices. In: Luk, F.T. (ed.) Proc. of SPIE. Advanced Signal Processing Algorithms, vol. 2563, pp. 293–301 (1995)

  14. Morgan, R.B.: Computing interior eigenvalues of large matrices. Linear Algebra Appl. 154–156, 289–309 (1991)

    Article  Google Scholar 

  15. Morgan, R.B.: Restarted block GMRES with deflation of eigenvalues. Appl. Numer. Math. 54, 222–236 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nagy, J.G.: Fast algorithms for the regularization of banded Toeplitz least squares problems. In: Luk, F.T. (ed.) Proc. of SPIE. Advanced Signal Processing Algorithms, Architecture, and Implementations. IV, vol. 2295, pp. 566–575 (1994)

  17. Paige, C.C., Parlett, B.N., van der Vorst, H.A.: Approximate solutions and eigenvalue bounds from Krylov subspaces. Numer. Linear Algebra Appl. 2, 115–134 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Parlett, B.: Misconvergence in the Lanczos algorithm. In: Cox, M.G., Hammarling, S. (eds.) Reliable Numerical Computation, pp. 7–24. Clarendon, Oxford (1990)

    Google Scholar 

  19. Simon, H.D., Zha, H.: Low rank matrix approximation using the Lanczos bidiagonalization process with applications. SIAM J. Sci. Comput. 21, 2257–2274 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sorensen, D.C.: Numerical methods for large eigenvalue problems. Acta Numer. 11, 519–584 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Vudoc, R., Im, E.-J., Yellick, K.A.: SPARSITY: Optimization framework for sparse matrix kernels. Int. J. High Perform. Comput. Appl. 18, 135–158 (2004)

    Article  Google Scholar 

  22. Wijshoff, H.A.G.: Implementing sparse BLAS primitives on concurrent/vector processors: a case study. In: Gibbons, A., Spirakis, P.(eds.) Lectures in Parallel Computation, pp. 405–437. Cambridge University Press, Cambridge, UK (1993)

    Google Scholar 

  23. Wu, K., Simon, H.: Thick-restarted Lanczos method for large symmetric eigenvalue problems. SIAM J. Matrix Anal. Appl. 22, 602–616 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Baglama.

Additional information

Research supported in part by NSF grant DMS-0107858, NSF grant DMS-0311786, and an OBR Research Challenge Grant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baglama, J., Reichel, L. Restarted block Lanczos bidiagonalization methods. Numer Algor 43, 251–272 (2006). https://doi.org/10.1007/s11075-006-9057-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-006-9057-z

Keywords

Mathematics Subject Classifications (2000)

Navigation