Skip to main content
Log in

On choices of formulations of computing the generalized singular value decomposition of a large matrix pair

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

For the computation of the generalized singular value decomposition (GSVD) of a large matrix pair (A,B) of full column rank, the GSVD is commonly formulated as two mathematically equivalent generalized eigenvalue problems, so that a generalized eigensolver can be applied to one of them and the desired GSVD components are then recovered from the computed generalized eigenpairs. Our concern in this paper is, in finite precision arithmetic, which generalized eigenvalue formulation is numerically preferable to compute the desired GSVD components more accurately. We make a detailed perturbation analysis on the two formulations and show how to make a suitable choice between them. Numerical experiments illustrate the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Avron, H., Druinsky, A., Toledo, S.: Spectral condition-number estimation of large sparse matrices. Numer. Linear Algebra Appl., 26, e2235 (2019)

  2. Bai, Z., Demmel, J., Dongrra, J., Ruhe, A., van der Vorst, H.A.: Templates for the Solution of Algebraic Eigenvalue Problems: a Practical Guide. SIAM, Philadelphia (2000)

    Book  MATH  Google Scholar 

  3. Betcke, T.: The generalized singular value decomposition and the method of particular solutions. SIAM J. Sci. Comput. 30, 1278–1295 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Björck, Å.: Numerical Methods for Least Squares Problems. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  5. Chu, K.W.E.: Singular value and generalized singular value decompositions and the solution of linear matrix equations. Linear Algebra Appl. 88, 83–98 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Davis, T.A., Hu, Y.: The university of florida sparse matrix collection. ACM Trans. Math. Software 38, 1–25 (2011). Data available online at http://www.cise.ufl.edu/research/sparse/matrices/

    MathSciNet  MATH  Google Scholar 

  7. Golub, G.H., van Loan, C.F.: Matrix Computations. John Hopkins University Press, Baltimore (2012)

    MATH  Google Scholar 

  8. Hansen, P.C.: Regularization, GSVD and truncated GSVD. BIT 29, 491–504 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAM, Philadelphia (1998)

    Book  Google Scholar 

  10. Hochstenbach, M.E.: Harmonic and refined extraction methods for the singular value problem, with applications in least squares problems. BIT 29, 721–754 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hochstenbach, M.E.: A Jacobi–Davidson type method for the generalized singular value problem. Linear Algebra Appl. 431, 471–487 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Howland, P., Jeon, M., Park, H.: Structure preserving dimension reduction for clustered text data based on the generalized singular value decomposition. SIAM J. Matrix Anal. Appl. 25, 165–179 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jia, Z.: Using cross-product matrices to compute the SVD. Numer. Algor. 42, 31–61 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jia, Z., Niu, D.: An implicitly restarted refined bidiagonalization Lanczos method for computing a partial singular value decomposition. SIAM J. Matrix Anal. Appl. 25, 246–265 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jia, Z., Niu, D.: A refined harmonic Lanczos bidiagonalization method and an implicitly restarted algorithm for computing the smallest singular triplets of large matrices. SIAM J. Sci. Comput. 32, 714–744 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jia, Z., Yang, Y.: A joint bidiagonalization based algorithm for large scale general-form Tikhonov regularization. Appl. Numer. Math. 157, 159–177 (2020)

  17. Kågström, B.: The generalized singular value decomposition and the general (A− λ B)-problem. BIT 24, 568–583 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  18. Paige, C.C., Saunders, M.A.: Towards a generalized singular value decomposition. SIAM J. Numer. Anal. 18, 398–405 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  19. Park, C.H., Park, H.: A relationship between linear discriminant analysis and the generalized minimum squared error solution. SIAM J. Matrix Anal. Appl. 27, 474–492 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Parlett, B.N.: The Symmetric Eigenvalue Problem. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  21. Saad, Y.: Numerical Methods for Large Eigenvalue Problems. SIAM, Philadelphia (2011)

    Book  MATH  Google Scholar 

  22. Stewart, G.W.: Matrix Algorithms Volume II: Eigensystems. SIAM, Philadelphia (2001)

    Book  Google Scholar 

  23. Stewart, G.W., Sun, J.: Matrix Perturbation Theory. Academic Press, London (1990)

    MATH  Google Scholar 

  24. van Huffel, S., Lemmerling, P.: Total Least Squares and Errors-In-Variables Modeling. Kluwer Academic Publishers, Norwell (2002)

    Book  MATH  Google Scholar 

  25. van Loan, C.F.: Generalizing the singular value decomposition. SIAM J. Numer. Anal. 13, 76–83 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zha, H.: Computing the generalized singular values/vectors of large sparse or structured matrix pairs. Numer. Math. 72, 391–417 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We would like to thank the two referees very much for their valuable suggestions and comments, which made us to improve on the paper presentation.

Funding

This study was supported by the National Natural Science Foundation of China (No.11771249).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongxiao Jia.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Jia, Z. On choices of formulations of computing the generalized singular value decomposition of a large matrix pair. Numer Algor 87, 689–718 (2021). https://doi.org/10.1007/s11075-020-00984-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-020-00984-9

Keywords

Mathematics Subject Classification (2010)

Navigation