Skip to main content
Log in

Data-driven vector degenerate and nondegenerate solitons of coupled nonlocal nonlinear Schrödinger equation via improved PINN algorithm

  • Research
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In recent years, the Physics-Informed Neural Networks have demonstrated significant potential in solving nonlinear evolution equations, and exhibited high stability and applicability. However, it does not fully adapt to nonlocal nonlinear evolution equations. In this paper, we improve the traditional Physics-Informed Neural Network by incorporating prior information as a supplementary term in the loss function to effectively capture the amplitude distribution at the target location, thereby enhancing the predictive accuracy of the neural network. Additionally, we address the problem of multiple competing objectives in the loss function through stepwise training, leveraging adaptive weights and adaptive activation functions to optimize predictions. We apply these improved strategies of physical information neural networks to predict soliton solution of the coupled nonlocal nonlinear Schrödinger equation, including two kinds of nondegenerate one-soliton, and two kinds of degenerate double-soliton. Moreover, we also discuss the impact of Gaussian noise on data-driven parameter discovery of the coupled nonlocal nonlinear Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Kivshar, Y., Agrawal, G.: Optical Solitons: From fibers to photonic crystals. Journal. 108 (2003).

  2. Zhou, Q., Triki, H., Xu, J., Zeng, Z., Liu, W., Biswas, A.: Perturbation of chirped localized waves in a dual-power law nonlinear medium. Chaos Solitons Fractals 160, 112198 (2022)

    Article  MathSciNet  Google Scholar 

  3. Chen, Y.-X.: Vector peregrine composites on the periodic background in spin–orbit coupled Spin-1 Bose–Einstein condensates. Chaos Solitons Fractals 169, 113251 (2023)

    Article  MathSciNet  Google Scholar 

  4. Zhao, L.H., Dai, C.Q., Wang, Y.Y.: Elastic and inelastic interaction behaviours for the (2+1)-dimensional Nizhnik–Novikov–Veselov equation in water waves. Z. Naturforsch A 68, 735–743 (2013)

    Article  Google Scholar 

  5. Liu, C.Y., Wang, Y.Y., Dai, C.Q.: Variable separation solutions of the wick-type stochastic Broer–Kaup system. Can. J. Phys. 90, 871–876 (2012)

    Article  Google Scholar 

  6. Xu, Y.-J.: Vector ring-like combined Akhmediev breathers for partially nonlocal nonlinearity under external potentials. Chaos Solitons Fractals 177, 114308 (2023)

    Article  MathSciNet  Google Scholar 

  7. Raissi, M., Babaee, H., Givi, P.: Deep learning of turbulent scalar mixing. Phys. Rev. Fluids. 4, 124501 (2019)

    Article  Google Scholar 

  8. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019)

    Article  MathSciNet  Google Scholar 

  9. Lagaris, I., Likas, A., Fotiadis, D.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9, 987–1000 (1998)

    Article  Google Scholar 

  10. Bo, W., Wang, R.-R., Fang, Y., Wang, Y.-Y., Dai, C.: Prediction and dynamical evolution of multipole soliton families in fractional Schrödinger equation with the PT-symmetric potential and saturable nonlinearity. Nonlinear Dyn. 111, 1577–1588 (2022)

    Article  Google Scholar 

  11. Liu, X.-M., Zhang, Z.-Y., Liu, W.-J.: Physics-informed neural network method for predicting soliton dynamics supported by complex parity-time symmetric potentials. Chin. Phys. Lett. 40, 070501 (2023)

    Article  Google Scholar 

  12. Karumuri, S., Tripathy, R., Bilionis, I., Panchal, J.: Simulator-free solution of high-dimensional stochastic elliptic partial differential equations using deep neural networks. J. Comput. Phys. 404, 109120 (2020)

    Article  MathSciNet  Google Scholar 

  13. Zhu, B.W., Bo, W.B., Cao, Q.H., Geng, K.L., Wang, Y.Y., Dai, C.Q.: PT-symmetric solitons and parameter discovery in self-defocusing saturable nonlinear Schrodinger equation via LrD-PINN. Chaos 33, 073132 (2023)

    Article  MathSciNet  Google Scholar 

  14. Jagtap, A.D., Karniadakis, G.E.: Extended physics-informed neural networks (XPINNs): a generalized space-time domain decomposition based deep learning framework for nonlinear partial differential equations. Commun. Comput. Phys. (2020). https://doi.org/10.4208/cicp.oa-2020-0164

    Article  MathSciNet  Google Scholar 

  15. Fang, Y., Bo, W.-B., Wang, R.-R., Wang, Y.-Y., Dai, C.-Q.: Predicting nonlinear dynamics of optical solitons in optical fiber via the SCPINN. Chaos Solitons Fractals 165, 112908 (2022)

    Article  Google Scholar 

  16. Jagtap, A.D., Kawaguchi, K., Karniadakis, G.E.: Adaptive activation functions accelerate convergence in deep and physics-informed neural networks. J. Comput. Phys. 404, 109136 (2020)

    Article  MathSciNet  Google Scholar 

  17. Tian, S., Cao, C., Li, B.: Data-driven nondegenerate bound-state solitons of multicomponent Bose–Einstein condensates via mix-training PINN. Res. Phys. 52, 106842 (2023)

    Google Scholar 

  18. Li, J., Li, B.: Mix-training physics-informed neural networks for the rogue waves of nonlinear Schrödinger equation. Chaos Solitons Fractals 164, 112712 (2022)

    Article  Google Scholar 

  19. Qiu, W.X., Geng, K.L., Zhu, B.W., Liu, W., Li, J.T., Dai, C.Q.: Data-driven forward-inverse problems of the 2-coupled mixed derivative nonlinear Schrodinger equation using deep learning. Nonlinear Dyn. (2024). https://doi.org/10.1007/s11071-024-09605-9

    Article  Google Scholar 

  20. Zhu, B.-W., Fang, Y., Liu, W., Dai, C.-Q.: Predicting the dynamic process and model parameters of vector optical solitons under coupled higher-order effects via WL-tsPINN. Chaos Solitons Fractals 162, 112441 (2022)

    Article  MathSciNet  Google Scholar 

  21. Peng, W.-Q., Pu, J.-C., Chen, Y.: PINN deep learning method for the Chen–Lee–Liu equation: Rogue wave on the periodic background. Commun. Nonlinear Sci. Numer. Simul. 105, 106067 (2022)

    Article  MathSciNet  Google Scholar 

  22. Peng, W.-Q., Chen, Y.: N-double poles solutions for nonlocal Hirota equation with nonzero boundary conditions using Riemann–Hilbert method and PINN algorithm. Phys. D 435, 133274 (2022)

    Article  MathSciNet  Google Scholar 

  23. Zhu, J., Chen, Y.: Data-driven solutions and parameter discovery of the nonlocal mKdV equation via deep learning method. Nonlinear Dyn. 111, 8397–8417 (2023)

    Article  Google Scholar 

  24. Peng, W.-Q., Chen, Y.: PT-symmetric PINN for integrable nonlocal equations: forward and inverse problems. Chaos: Interdiscip. J. Nonlinear Sci. 34, 043124 (2024)

    Article  MathSciNet  Google Scholar 

  25. Seenimuthu, S., Ratchagan, R., Lakshmanan, M.: Nondegenerate bright solitons in coupled nonlinear schrödinger systems: recent developments on optical vector solitons. Photonics 8, 258 (2021)

    Article  Google Scholar 

  26. Hou, J., Li, Y., Ying, S.: Enhancing PINNs for solving PDEs via adaptive collocation point movement and adaptive loss weighting. Nonlinear Dyn. (2023). https://doi.org/10.1007/s11071-023-08654-w

    Article  Google Scholar 

  27. Abeya, A., Biondini, G., Prinari, B.: Manakov system with parity symmetry on nonzero background and associated boundary value problems. J. Phys.: Math. Theor. 55, 254001 (2022)

    MathSciNet  Google Scholar 

  28. Sabirov, K.K., Yusupov, J.R., Aripov, M.M., Ehrhardt, M., Matrasulov, D.U.: Reflectionless propagation of Manakov solitons on a line: A model based on the concept of transparent boundary conditions. Phys. Rev. E 103, 043305 (2021)

    Article  MathSciNet  Google Scholar 

  29. Bender, C.M., Berntson, B.K., Parker, D., Samuel, E.: Observation of PT phase transition in a simple mechanical system. Am. J. Phys. 81, 173–179 (2013)

    Article  Google Scholar 

  30. Lou, S.Y.: Multi-place physics and multi-place nonlocal systems. Commun. Theor. Phys. 72, 057001 (2020)

    Article  MathSciNet  Google Scholar 

  31. Stein, M.: Large sample properties of simulations using latin hypercube sampling. Technometrics 29, 143–151 (1987)

    Article  MathSciNet  Google Scholar 

  32. Yu, F., Liu, C., Li, L.: Broken and unbroken solutions and dynamic behaviors for the mixed local–nonlocal Schrödinger equation. Appl. Math. Lett. 117, 107075 (2021)

    Article  Google Scholar 

  33. Stalin, S., Ramakrishnan, R., Senthilvelan, M., Lakshmanan, M.: Nondegenerate solitons in Manakov system. Phys. Rev. Lett. 122, 043901 (2019)

    Article  Google Scholar 

  34. Geng, K.-L., Zhu, B.-W., Cao, Q.-H., Dai, C.-Q., Wang, Y.-Y.: Nondegenerate soliton dynamics of nonlocal nonlinear Schrödinger equation. Nonlinear Dyn. 111, 16483–16496 (2023)

    Article  Google Scholar 

  35. Pu, J., Chen, Y.: Complex dynamics on the one-dimensional quantum droplets via time piecewise PINNs. Phys. D 454, 133851 (2023)

    Article  MathSciNet  Google Scholar 

  36. Stalin, S., Senthilvelan, M., Lakshmanan, M.: Energy-sharing collisions and the dynamics of degenerate solitons in the nonlocal Manakov system. Nonlinear Dyn. 95, 1767–1780 (2018)

    Article  Google Scholar 

Download references

Funding

National Natural Science Foundation of China(Grant Nos. 12075210 and 12261131495); the Scientific Research and Developed Fund of Zhejiang A&F University(Grant No. 2021FR0009).

Author information

Authors and Affiliations

Authors

Contributions

Wei-Xin Qiu: Software, Investigation, Writing-Original draft preparation. Zhi-Zeng Si: Software, Investigation. Da-Sheng Mou: Software, Investigation. Dai-Chao Qing: Conceptualization, Methodology, Writing-Reviewing and Editing, Supervision. Ji-Tao Li: Conceptualization, Writing-Reviewing and Editing, Supervision. Wei Liu: Conceptualization, Writing-Reviewing and Editing, Supervision.

Corresponding authors

Correspondence to Chao-Qing Dai, Ji-Tao Li or Wei Liu.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, WX., Si, ZZ., Mou, DS. et al. Data-driven vector degenerate and nondegenerate solitons of coupled nonlocal nonlinear Schrödinger equation via improved PINN algorithm. Nonlinear Dyn (2024). https://doi.org/10.1007/s11071-024-09648-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11071-024-09648-y

Keywords

Navigation