Skip to main content
Log in

Effect of Spatial Average on the Spatiotemporal Pattern Formation of Reaction-Diffusion Systems

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

Some quantities in reaction-diffusion models from cellular biology or ecology depend on the spatial average of density functions instead of local density functions. We show that such nonlocal spatial average can induce instability of constant steady state, which is different from classical Turing instability. For a general scalar equation with spatial average, the occurrence of the steady state bifurcation is rigorously proved, and the formula to determine the bifurcation direction and the stability of the bifurcating steady state is given. For the two-species model, spatially non-homogeneous time-periodic orbits could arise due to spatially non-homogeneous Hopf bifurcation from the constant equilibrium. Examples from a nonlocal cooperative Lotka-Volterra model and a nonlocal Rosenzweig-MacArthur predator-prey model are used to demonstrate the bifurcation of spatially non-homogeneous patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Altschuler, S.J., Angenent, S.B., Wang, Y., Wu, L.F.: On the spontaneous emergence of cell polarity. Nature 454(7206), 886–889 (2008)

    Article  Google Scholar 

  2. Britton, N.F.: Aggregation and the competitive exclusion principle. J. Theoret. Biol. 136(1), 57–66 (1989)

    Article  MathSciNet  Google Scholar 

  3. Casten, R.G., Holland, C.J.: Instability results for reaction diffusion equations with Neumann boundary conditions. J. Differ. Equ. 27(2), 266–273 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, S.S., Shi, J.P.: Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect. J. Differ. Equ. 253(12), 3440–3470 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, S.S., Shi, J.P., Wei, J.J.: Time delay-induced instabilities and Hopf bifurcations in general reaction-diffusion systems. J. Nonlinear Sci. 23(1), 1–38 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, S.S., Shi, J.P., Wei, J.J.: Bifurcation analysis of the Gierer-Meinhardt system with a saturation in the activator production. Appl. Anal. 93(6), 1115–1134 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, S.S., Wei, J.J., Yang, K.Q.: Spatial nonhomogeneous periodic solutions induced by nonlocal prey competition in a diffusive predator-prey model. Int. J. Bifur. Chaos Appl. Sci. Engrg. 29(4):1950043, 19 (2019)

  8. Chen, S.S., Yu, J.S.: Stability and bifurcation on predator-prey systems with nonlocal prey competition. Discrete Contin. Dyn. Syst. 38(1), 43–62 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, X.F., Hambrock, R., Lou, Y.: Evolution of conditional dispersal: a reaction-diffusion-advection model. J. Math. Biol. 57(3), 361–386 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, X.F., Lam, K.-Y., Lou, Y.: Dynamics of a reaction-diffusion-advection model for two competing species. Discrete Contin. Dyn. Syst. 32(11), 3841–3859 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cosner, C., Lou, Y.: Does movement toward better environments always benefit a population? J. Math. Anal. Appl. 277(2), 489–503 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Crandall, M.G., Rabinowitz, P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  13. Crandall, M.G., Rabinowitz, P.H.: Bifurcation, perturbation of simple eigenvalues and linearized stability. Arch. Ration. Mech. Anal. 52, 161–180 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fuentes, M.A., Kuperman, M.N., Kenkre, V.M.: Nonlocal interaction effects on pattern formation in population dynamics. Phys. Rev. Lett. 91(15), 158104 (2003)

    Article  Google Scholar 

  15. Furter, J., Grinfeld, M.: Local versus nonlocal interactions in population dynamics. J. Math. Biol. 27(1), 65–80 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gourley, S.A., Chaplain, M.A.J., Davidson, F.A.: Spatio-temporal pattern formation in a nonlocal reaction-diffusion equation. Dyn. Syst. 16(2), 173–192 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jin, J.Y., Shi, J.P., Wei, J.J., Yi, F.Q.: Bifurcations of patterned solutions in the diffusive Lengyel-Epstein system of CIMA chemical reactions. Rocky Mt. J. Math. 43(5), 1637–1674 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Juergens, N.: The biological underpinnings of Namib desert fairy circles. Science 339(6127), 1618–1621 (2013)

    Article  Google Scholar 

  19. Kéfi, S., Holmgren, M., Scheffer, M.: When can positive interactions cause alternative stable states in ecosystems? Funct. Ecol. 30(1), 88–97 (2016)

    Article  Google Scholar 

  20. Kishimoto, K., Weinberger, H.F.: The spatial homogeneity of stable equilibria of some reaction-diffusion systems on convex domains. J. Differ. Equ. 58(1), 15–21 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Klausmeier, C.A.: Regular and irregular patterns in semiarid vegetation. Science 284(5421), 1826–1828 (1999)

    Article  Google Scholar 

  22. Kondo, S., Asai, R.: A reaction-diffusion wave on the skin of the Marine angelfish Pomacanthus. Nature 376(6543), 765 (1995)

    Article  Google Scholar 

  23. Kondo, S., Miura, T.: Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329(5999), 1616–1620 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lengyel, I., Epstein, I.R.: Modeling of Turing structures in the chlorite-iodide-malonic acid-starch reaction system. Science 251(4994), 650–652 (1991)

    Article  Google Scholar 

  25. Liu, P., Shi, J.P.: Bifurcation of positive solutions to scalar reaction-diffusion equations with nonlinear boundary condition. J. Differ. Equ. 264(1), 425–454 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lou, Y., Ni, W.M.: Diffusion, self-diffusion and cross-diffusion. J. Differ. Equ. 131(1), 79–131 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  27. Maini, P., Painter, K., Chau, H.: Spatial pattern formation in chemical and biological systems. J. Chem. Soc. Faraday Trans. 93(20), 3601–3610 (1997)

    Article  Google Scholar 

  28. Matano, H.: Asymptotic behavior and stability of solutions of semi-linear diffusion equations. Publ. Res. Inst. Math. Sci. 15(2), 401–454 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  29. Matano, H., Mimura, M.: Pattern formation in competition-diffusion systems in nonconvex domains. Publ. Res. Inst. Math. Sci. 19(3), 1049–1079 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  30. Merchant, S.M., Nagata, W.: Instabilities and spatiotemporal patterns behind predator invasions with nonlocal prey competition. Theor. Popu. Biol. 80(4), 289–297 (2011)

    Article  MATH  Google Scholar 

  31. Merchant, S.M., Nagata, W.: Selection and stability of wave trains behind predator invasions in a model with non-local prey competition. IMA J. Appl. Math. 80(4), 1155–1177 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mimura, M., Kawasaki, K.: Spatial segregation in competitive interaction-diffusion equations. J. Math. Biol. 9(1), 49–64 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mimura, M., Nishiura, Y., Tesei, A., Tsujikawa, T.: Coexistence problem for two competing species models with density-dependent diffusion. Hiroshima Math. J. 14(2), 425–449 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ni, W.J., Shi, J.P., Wang, M.X.: Global stability and pattern formation in a nonlocal diffusive Lotka-Volterra competition model. J. Differ. Equ. 264(11), 6891–6932 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ouyang, Q., Swinney, H.L.: Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352(6336), 610 (1991)

    Article  Google Scholar 

  36. Rietkerk, M., Dekker, S.C., De Ruiter, P.C., van de Koppel, J.: Self-organized patchiness and catastrophic shifts in ecosystems. Science 305(5692), 1926–1929 (2004)

    Article  Google Scholar 

  37. Sheth, R., Marcon, L., Bastida, M.F., Junco, M., Quintana, L., Dahn, R., Kmita, M., Sharpe, J., Ros, M.A.: Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism. Science 338(6113), 1476–1480 (2012)

    Article  Google Scholar 

  38. Shi, J.P.: Persistence and bifurcation of degenerate solutions. J. Funct. Anal. 169(2), 494–531 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sick, S., Reinker, S., Timmer, J., Schlake, T.: Wnt and dkk determine hair follicle spacing through a reaction-diffusion mechanism. Science 314(5804), 1447–1450 (2006)

    Article  Google Scholar 

  40. Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, volume 41 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1995)

  41. Song, Y.L., Jiang, H.P., Liu, Q.X., Yuan, Y.: Spatiotemporal dynamics of the diffusive mussel-algae model near Turing-Hopf bifurcation. SIAM J. Appl. Dyn. Syst. 16(4), 2030–2062 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Song, Y.L., Wu, S.H., Wang, H.: Spatiotemporal dynamics in the single population model with memory-based diffusion and nonlocal effect. J. Differ. Equ. 267(11), 6316–6351 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  43. Song, Y.L., Zhang, T.H., Peng, Y.H.: Turing-Hopf bifurcation in the reaction-diffusion equations and its applications. Commun. Nonlinear Sci. Numer. Simul. 33, 229–258 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sun, L.N., Shi, J.P., Wang, Y.W.: Existence and uniqueness of steady state solutions of a nonlocal diffusive logistic equation. Z. Angew. Math. Phys. 64(4), 1267–1278 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. Takeuchi, Y.: Global Dynamical Properties of Lotka-Volterra Systems. World Scientific Publishing Co., Inc., River Edge (1996)

    Book  MATH  Google Scholar 

  46. Tian, C.W., Shi, Q.Y., Cui, X.P., Guo, J.Z., Yang, Z.B., Shi, J.P.: Spatiotemporal dynamics of a reaction-diffusion model of pollen tube tip growth. J. Math. Biol. 79(4), 1319–1355 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. Ser. B 237, 37–72 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  48. Wu, S.H., Song, Y.L.: Stability and spatiotemporal dynamics in a diffusive predator-prey model with nonlocal prey competition. Nonlinear Anal. Real World Appl. 48, 12–39 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yi, F.Q., Wei, J.J., Shi, J.P.: Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator-prey system. J. Differ. Equ. 246(5), 1944–1977 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank an anonymous reviewer for helpful comments which improved the initial draft of the paper. This work was done when the first author visited William & Mary during the academic year 2016–2018, and she would like to thank Department of Mathematics at William & Mary for their support and kind hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junping Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by a Grant from National Natural Science Foundation of China (No. 12001240, No. 11971143), US-NSF Grant DMS-1853598, Natural Science Foundation of Jiangsu Province (No. BK20200589), Zhejiang Provincial Natural Science Foundation of China (No. LY19A010010), China Scholarship Council.

Appendix

Appendix

1.1 The proof of Theorem 2.6

Proof

Firstly, we integrate both sides of Eq. (2.17) on \(\Omega \) and divide by \(|\Omega |\) which is the spatial domain size, then we obtain a ODE system of \({\bar{u}}\):

$$\begin{aligned} {\bar{u}}_t=a-(b+c){\bar{u}}-({\tilde{d}}+e){\bar{u}}^2. \end{aligned}$$
(A.1)

Then, the equilibrium of Eq. (A.1) also satisfies (2.17) which admits a unique positive root \(u=u_*\). In addition, for Eq. (A.1), the unique equilibrium \(u=u_*\) is globally stable, and all the solutions of (A.1) will converge to \(u=u_*\) as \(t\rightarrow +\infty \). Note that \({\bar{u}}\) is a function of t. Then, we rewrite Eq. (2.17) as:

$$\begin{aligned} u_t=d\Delta u+A(t)-B(t)u, \end{aligned}$$
(A.2)

where \(A(t)=a-b{\bar{u}}-{\tilde{d}}{\bar{u}}^2\) and \(B(t)=c+e{\bar{u}}\). Denote \({\tilde{A}}=\lim \nolimits _{t\rightarrow +\infty }A(t)>0,~{\tilde{B}}=\lim \nolimits _{t\rightarrow +\infty }B(t)>0\), then for any \(0<\epsilon \ll 1\), there exists \(T>0\) such that for arbitrary \(t>T\), we have

$$\begin{aligned} {\left\{ \begin{array}{ll} u_t\le d\Delta u+({\tilde{A}}+\epsilon )-({\tilde{B}}-\epsilon )u,\\ u_t\ge d\Delta u+({\tilde{A}}-\epsilon )-({\tilde{B}}+\epsilon )u. \end{array}\right. } \end{aligned}$$

Therefore, we can use the \(u_1\ge u(x,t)\) as the upper solution with \(u_1\) is the solution of the following equation:

$$\begin{aligned} {\left\{ \begin{array}{ll} u_{1}^{\prime }=({\tilde{A}}+\epsilon )-({\tilde{B}}-\epsilon )u_1,~t>T,\\ u_{1}(0)=\max \limits _{x\in \Omega } u(x,T), \end{array}\right. } \end{aligned}$$
(A.3)

and the lower solution \(u_2\le u(x,t)\) satisfying

$$\begin{aligned} {\left\{ \begin{array}{ll} u_{2}^{\prime }=({\tilde{A}}-\epsilon )-({\tilde{B}}+\epsilon )u_2,~t>T,\\ u_{2}(0)=\max \limits _{x\in \Omega } u(x,T). \end{array}\right. } \end{aligned}$$
(A.4)

Moreover, by the theory of ODE, we know the asymptotic behavior of Eqs. (A.3) and (A.4):

$$\begin{aligned} \lim _{t\rightarrow +\infty }u_1(t)=\frac{{\tilde{A}}+\epsilon }{{\tilde{B}}-\epsilon },~~\lim _{t\rightarrow +\infty }u_2(t)=\frac{{\tilde{A}}-\epsilon }{{\tilde{B}}+\epsilon }. \end{aligned}$$

By the arbitrariness of \(\epsilon \), we obtain that \(\lim \nolimits _{t\rightarrow +\infty }u(x,t)={\tilde{A}}/{\tilde{B}}=u_*\). We complete the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Q., Shi, J. & Song, Y. Effect of Spatial Average on the Spatiotemporal Pattern Formation of Reaction-Diffusion Systems. J Dyn Diff Equat 34, 2123–2156 (2022). https://doi.org/10.1007/s10884-021-09995-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-021-09995-z

Keywords

Mathematics Subject Classification

Navigation