Skip to main content
Log in

Nth order generalized Darboux transformation and solitons, breathers and rogue waves in a variable-coefficient coupled nonlinear Schrödinger equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Based on the generalized Darboux transformation, the underlying propagation mechanism of localized waves is systematically studied. More specifically, the variable-coefficient coupled nonlinear Schrödinger (NLS) equation is used to accurately describe the dispersion compensation and lumped amplification properties in an inhomogeneous optical fiber. Based on the Lax pair and the seed solutions, the expressions of both the first- and second-order localized wave solutions are calculated. Then, by performing numerical simulations, the evolutionary plots of the interaction of rogue waves with bright-dark solitons and breathers are obtained, and their dynamical characteristics are further analyzed. From the acquired results, it is found that the values of \(\beta \left( z \right) \) and \(\gamma \left( z \right) \) have a direct influence on the propagation shape of the localized waves. Our work provides valuable insights into the dynamical characteristics of the localized waves that the variable-coefficient equations could describe to a certain extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no data sets were generated or analyzed during the current study.

References

  1. Xu, C.X., Xu, T., Meng, D.X., et al.: Binary Darboux transformation and new soliton solutions of the focusing nonlocal nonlinear Schrödinger equation. J. Math. Anal. Appl. 516(2), 126514 (2022)

    Article  MATH  Google Scholar 

  2. Li, L., Wang, L., Yu, F.J.: Some general bright soliton solutions and interactions for a (2+1)-dimensional nonlocal nonlinear Schrödinger equation. Appl. Math. Lett. 141, 108600 (2023)

    Article  MATH  Google Scholar 

  3. Yang, J., Tian, H.J.: Nth-order smooth positon and breather-positon solutions for the generalized integrable discrete nonlinear Schrödinger equation. Nonlinear Dyn. 111(6), 5629–5639 (2022)

    Article  Google Scholar 

  4. Ndogmo, J.C.: Group classification and exact solutions of a class of nonlinear waves. Appl. Math. Comput. 443, 127769 (2023)

    MathSciNet  MATH  Google Scholar 

  5. Triki, H., Sun, Y.Z., Zhou, Q., et al.: Dark solitary pulses and moving fronts in an optical medium with the higher-order dispersive and nonlinear effects. Chaos Solitons Fract.: Interdiscip. J. Nonlinear Sci. Nonequilibrium Complex Phenomena 164, 112622 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Turbiner, A.V., Shuryak, E.: On the connection between perturbation theory and new semiclassical expansion in quantum mechanics. Nucl. Phys. Sect. B 989, 116117 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fioravanti, D., Rossi, M.: On the origin of the correspondence between classical and quantum integrable theories. Phys. Lett. B 838, 137706 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  8. Liu, Y., Cui, T., Li, D.: Emerging d-d orbital coupling between non-d-block main-group elements Mg and I at high pressure. iScience 26(3), 106113–106113 (2023)

    Article  Google Scholar 

  9. Sun, L., Zhang, J.W., Zhou, G., et al.: Theoretical investigations of weakly- and strongly-coupled multi-core fibers for the applications of optical submarine communications under power and fiber count limits. Opt. Express 31(3), 4615–4629 (2023)

    Article  Google Scholar 

  10. Jin, T.W., Yi, X.W., Lin, H.: Phase rearrangement shell mapping in single-span nonlinear optical fiber communication system. Opt. Commun. 530, 129107 (2023)

    Article  Google Scholar 

  11. Le, X., Kong, Y., Han, L.J.: Solutions of solitary-wave for the variable-coefficient nonlinear Schrödinger equation with two power-law nonlinear terms. Int. J. Mod. Phys. B 32(28), 11 (2018)

    MATH  Google Scholar 

  12. Jia, R.R., Wang, Y.F.: Dark soliton solutions for the coupled variable-coefficient fourth-order nonlinear Schrödinger equations in the inhomogeneous optical fiber. Wave Motion 114, 103042 (2022)

    Article  MATH  Google Scholar 

  13. Mathanaranjan, T.: Optical solitons and stability analysis for the new (3+1)-dimensional nonlinear Schrödinger equation. J. Nonlinear Opt. Phys. Mater. 32(02).https://doi.org/10.1142/S0218863523500169 (2023)

  14. Zhou, H.J., Chen, Y.: High-order soliton solutions and their dynamics in the inhomogeneous variable coefficients Hirota equation. Commun. Nonlinear Sci. Numer. Simul. 120, 107149 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shi, W., Zha, Q.L.: Higher-order mixed solution and breather solution on a periodic background for the Kundu equation. Commun. Nonlinear Sci. Numer. Simul. 119, 107134 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhen, Y.P.: Rogue waves on the periodic background in the extended mKdV equation. Eur. Phys. J. B 96, 20 (2023)

    Article  Google Scholar 

  17. Wu, X.H., Gao, Y.T.: Generalized Darboux transformation and solitons for the Ablowitz–Ladik equation in an electrical lattice. Appl. Math. Lett. 137, 108476 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ding, C.C., Gao, Y.T., Yu, X.: N-fold generalized Darboux transformation and breather-rogue waves on the constant/periodic background for a generalized mixed nonlinear Schrödinger equation. Nonlinear Dyn. 109(2), 989–1004 (2022)

    Article  Google Scholar 

  19. Zhang, J.Y., Zhu, M.K., Liu, S.L.: Bäcklund transformation, Lax pair, infinite conservation laws and exact solutions to a generalized (2+1)-dimensional equation. Int. J. Mod. Phys. B 36(23), 2250146 (2022)

    Article  Google Scholar 

  20. Ali Mohamed, R., Khattab Mahmoud, A., Mabrouk, S.M.: Optical soliton solutions for the integrable Lakshmanan–Porsezian–Daniel equation via the inverse scattering transformation method with applications. Optik 272, 170256 (2023)

    Article  Google Scholar 

  21. Yan, X.Y., Liu, J.Z., Xin, X.P.: Soliton solutions and lump-type solutions to the (2+1)-dimensional Kadomtsev–Petviashvili equation with variable coefficient. Phys. Lett. A 457, 128574 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, H.F., Zhang, Y.F.: Application of Riemann–Hilbert method to an extended coupled nonlinear Schrödinger equations. J. Comput. Appl. Math. 420, 114812 (2023)

    Article  MATH  Google Scholar 

  23. Yang, D.Y., Tian, B., Shen, Y.: Generalized Darboux transformation and rogue waves for a coupled variable-coefficient nonlinear Schrödinger system in an inhomogeneous optical fiber. Chin. J. Phys. 82, 182–193 (2023)

    Article  Google Scholar 

  24. Liang, J.W., Xu, T., Tang, M.Y., et al.: Integrable conditions and inhomogeneous soliton solutions of a coupled nonlinear Schrödinger system with distributed coefficients. Nonlinear Anal. Real World Appl. 14(1), 329–339 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, L., Zhang, L.L., Zhu, Y.J.: Modulational instability, nonautonomous characteristics and semirational solutions for the coupled nonlinear Schrödinger equations in inhomogeneous fibers. Commun. Nonlinear Sci. Numer. Simul. 40, 216–237 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tian, J.P., Li, J.H., Kang, L.S., et al.: Soliton solutions and soliton interactions for the coupled nonlinear Schrödinger equation with varying coefficients. Phys. Scr. 72(5), 394–398 (2005)

    Article  MATH  Google Scholar 

  27. Li, H.J., Tian, J.P., Song, L.J., et al.: Self-similar soliton-like beam generation and propagation in inhomogeneous coupled optical fiber media system. Opt.-Int. J. Light Electron Opt. 124(24), 7040–7043 (2013)

    Article  Google Scholar 

  28. Musammil, N.M., Subha, P.A., Nithyanandan, K., et al.: Phase dynamics of inhomogeneous Manakov vector solitons. Phys. Rev. E 100(11), 012213 (2019)

    Article  Google Scholar 

  29. Liu, L., Tian, B., Wu, X.Y.: Vector dark solitons for a coupled nonlinear Schrödinger system with variable coefficients in an inhomogeneous optical fiber. Z. für Naturforschung A 72(8), 779–787 (2017)

    Article  Google Scholar 

  30. Han, Y., Tian, B., Yuan, Y.Q., et al.: Bilinear forms and bright-dark solitons for a coupled nonlinear Schrödinger system with variable coefficients in an inhomogeneous optical fiber. Chin. J. Phys. 62, 202–212 (2019)

    Article  Google Scholar 

Download references

Funding

The authors sincerely thanks for the support of the National Natural Science Foundation of China (NNSFC) through grant Nos. 11602232, Shanxi Natural Science Foundation (SNSF) through grant Nos. 202203021211086 and Nos. 202203021211088 and Shanxi Province Research Funding Program for Returning Students (2022-150).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. Song or W. X. Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to report regarding the present study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, N., Liu, R., Guo, M.M. et al. Nth order generalized Darboux transformation and solitons, breathers and rogue waves in a variable-coefficient coupled nonlinear Schrödinger equation. Nonlinear Dyn 111, 19347–19357 (2023). https://doi.org/10.1007/s11071-023-08843-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-023-08843-7

Keywords

Navigation