Skip to main content
Log in

N-fold generalized Darboux transformation and breather–rogue waves on the constant/periodic background for a generalized mixed nonlinear Schrödinger equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, a generalized mixed nonlinear Schrödinger equation, which arises in several physical applications including fluid mechanics (for the weakly nonlinear dispersive water waves), quantum field theory and nonlinear optics, is investigated. An N-fold generalized Darboux transformation (GDT) is constructed, where N is a positive integer. Based on that N-fold GDT, we derive the higher-order rational soliton solutions with the non-vanishing background. Semirational solutions on the constant/periodic background, which are composed of the mth-order rogue wave, the \((k-m-r)\)th-order so-called nondegenerate breather and the rth-order so-called degenerate breather, are constructed, where \(k=2,3,\ldots ,N\), \(m=1,2,\ldots ,k-1\) and \(r=0,2,3,\ldots \). Breathers on the dark/bright soliton or periodic wave background are presented. Based on the semirational solutions, breather–rogue waves on the constant/periodic background are discussed analytically and graphically. Classification conditions for different types of the breather–rogue waves on the constant/periodic background are given. Triangular structure of the higher-order rogue wave on the periodic background is studied and presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Notes

  1. Nondegenerate breathers denote the breathers corresponding to the different spectral parameters [21].

  2. Degenerate breathers denote the breathers corresponding to the same spectral parameter [21].

  3. Akhmediev breather exhibits the localization along the propagation direction and periodicity in the temporal dimension [51].

  4. Kuznetsov–Ma breather exhibits the localization in the temporal dimension and periodicity along the propagation direction [51].

  5. Spatio-temporal breather exhibits periodicity both in the temporal dimension and propagation direction [51].

References

  1. Serkin, V.N., Hasegawa, A.: Novel soliton solutions of the nonlinear Schrödinger equation model. Phys. Rev. Lett. 85, 4502 (2000)

    Article  Google Scholar 

  2. Tian, H.Y., Tian, B., Sun, Y., Zhang, C.R.: Three-component coupled nonlinear Schrödinger system in a multimode optical fiber: Darboux transformation induced via a rank-two projection matrix. Commun. Nonlinear Sci. Numer. Simul. 107, 106097 (2022)

  3. Chen, S.S., Tian, B., Qu, Q.X., Li, H., Sun, Y., Du, X.X.: Alfvén solitons and generalized Darboux transformation for a variable-coefficient derivative nonlinear Schrödinger equation in an inhomogeneous plasma. Chaos Solitons Fract. 148, 111029 (2021)

  4. Gao, X.Y., Guo, Y.J., Shan, W.R.: Optical waves/modes in a multicomponent inhomogeneous optical fiber via a three-coupled variable-coefficient nonlinear Schrödinger system. Appl. Math. Lett. 120, 107161 (2021)

  5. Wang, M., Tian, B., Hu, C.C., Liu, S.H.: Generalized Darboux transformation, solitonic interactions and bound states for a coupled fourth-order nonlinear Schrödinger system in a birefringent optical fiber. Appl. Math. Lett. 119, 106936 (2021)

  6. Yang, D.Y., Tian, B., Wang, M., Zhao, X., Shan, W.R., Jiang, Y.: Lax pair, Darboux transformation, breathers and rogue waves of an N-coupled nonautonomous nonlinear Schrödinger system for an optical fiber or plasma. Nonlinear Dyn. 107, 2657 (2022)

  7. Lu, Y.L., Wei, G.M., Liu, X.: Lax Pair, improved G-Riccati Backlund transformation and soliton-like solutions to variable-coefficient higher-order nonlinear Schrödinger equation in optical fibers, Acta Appl. Math. 164, 185 (2019)

  8. Clarkson, P.A., Cosgrove, C.M.: Painlevé analysis of the non-linear Schrödinger family of equations. J. Phys. A 20, 2003 (1987)

    Article  MathSciNet  Google Scholar 

  9. Lü, X., Peng, M.: Systematic construction of infinitely many conservation laws for certain nonlinear evolution equations in mathematical physics. Commun. Nonlinear Sci. Numer. Simul. 18, 2304 (2013)

    Article  MathSciNet  Google Scholar 

  10. Lü, X.: Soliton behavior for a generalized mixed nonlinear Schrödinger model with \(N\)-fold Darboux transformation. Chaos 23, 033137 (2013)

    Article  MathSciNet  Google Scholar 

  11. Wang, L., Jiang, D.Y., Qi, F.H., Shi, Y.Y., Zhao, Y.C.: Dynamics of the higher-order rogue waves for a generalized mixed nonlinear Schrödinger model. Commun. Nonlinear Sci. Numer. Simul. 42, 502 (2017)

    Article  MathSciNet  Google Scholar 

  12. Lü, X.: Madelung fluid description on a generalized mixed nonlinear Schrödinger equation. Nonlinear Dyn. 81, 239 (2015)

    Article  Google Scholar 

  13. Yang, B., Chen, J.C., Yang, J.K.: Rogue waves in the generalized derivative nonlinear Schrödinger equations. J. Nonlinear Sci. 30, 3027 (2020)

    Article  MathSciNet  Google Scholar 

  14. Kaup, D.J., Newell, A.C.: An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19, 798 (1978)

    Article  Google Scholar 

  15. Chen, H.H., Lee, Y.C., Liu, C.S.: Integrability of nonlinear Hamiltonian systems by inverse scattering method. Phys. Scr. 20, 490 (1979)

    Article  MathSciNet  Google Scholar 

  16. Kharif, C., Pelinovsky, E., Slunyaev, A.: Rogue Waves in the Ocean. Springer, Berlin (2009)

    MATH  Google Scholar 

  17. Hu, C.C., Tian, B., Zhao, X.: Rogue and lump waves for the (3+1)-dimensional Yu-Toda-Sasa-Fukuyama equation in a liquid or lattice. Int. J. Mod. Phys. B 35, 2150320 (2021)

  18. Akhmediev, N., Dudley, J.M., Solli, D.R., Turitsyn, S.K.: Recent progress in investigating optical rogue waves. J. Opt. 15, 060201 (2013)

    Article  Google Scholar 

  19. Dudley, J.M., Dias, F., Erkintalo, M., Genty, G.: Instabilities, breathers and rogue waves in optics. Nat. Photon. 8, 755 (2014)

    Article  Google Scholar 

  20. Moslem, W.M.: Langmuir rogue waves in electron-positron plasmas. Phys. Plasmas 18, 032301 (2011)

    Article  Google Scholar 

  21. Meng, G.Q.: High-order semi-rational solutions for the coherently coupled nonlinear Schrödinger equations with the positive coherent coupling. Appl. Math. Lett. 105, 106343 (2020)

    Article  MathSciNet  Google Scholar 

  22. Wang, L., Zhu, Y.J., Wang, Z.Z., Qi, F.H., Guo, R.: Higher-order semirational solutions and nonlinear wave interactions for a derivative nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 33, 218 (2016)

    Article  MathSciNet  Google Scholar 

  23. Degasperis, A., Lombardo, S.: Rational solitons of wave resonant-interaction models. Phys. Rev. E 88, 052914 (2013)

    Article  Google Scholar 

  24. Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Rogue waves and solitons on a cnoidal background. Eur. Phys. J. Spec. Top. 223, 43 (2014)

    Article  Google Scholar 

  25. Chen, J., Pelinovsky, D.E.: Rogue periodic waves of the modified KdV equation. Nonlinearity 31, 1955 (2018)

    Article  MathSciNet  Google Scholar 

  26. Chen, J., Pelinovsky, D.E.: Rogue periodic waves of the focusing nonlinear Schrödinger equation. Proc. R. Soc. A 474, 20170814 (2018)

    Article  Google Scholar 

  27. Xu, G., Chabchoub, A., Pelinovsky, D.E., Kibler, B.: Observation of modulation instability and rogue breathers on stationary periodic waves. Phys. Rev. Res. 2, 033528 (2020)

    Article  Google Scholar 

  28. Feng, B.F., Ling, L., Takahashi, D.A.: Multi-breather and high-order rogue waves for the nonlinear Schrödinger equation on the elliptic function background. Stud. Appl. Math. 144, 46 (2020)

    Article  MathSciNet  Google Scholar 

  29. Tian, H.Y., Tian, B., Zhang, C.R., Chen, S.S.: Darboux dressing transformation and superregular breathers for a coupled nonlinear Schrödinger system with the negative coherent coupling in a weakly birefringent fiber, Int. J. Comput. Math. 98, 2445 (2021)

  30. Ma, Y.X., Tian, B., Qu, Q.X., Tian, H.Y., Liu, S.H.: Bilinear Bäcklund transformation, breather- and travelling-wave solutions for a (2+1)-dimensional extended Kadomtsev-Petviashvili II equation in fluid mechanics. Mod. Phys. Lett. B 35, 2150315 (2021)

  31. Cheng, C.D., Tian, B., Zhang, C.R., Zhao, X.: Bilinear form, soliton, breather, hybrid and periodic-wave solutions for a (3+1)-dimensional Korteweg-de Vries equation in a fluid. Nonlinear Dyn. 105, 2525 (2021)

  32. Ding, C.C., Gao, Y.T., Yu, X., Liu, F.Y., Wu, X.H.: Three-wave resonant interactions: dark-bright-bright mixed N-and high-order solitons, breathers, and their structures. Wave. Random Complex (2022). https://doi.org/10.1080/17455030.2021.1976437

  33. Yang, D.Y., Tian, B., Qu, Q.X., Zhang, C.R., Chen, S.S., Wei, C.C.: Lax pair, conservation laws, Darboux transformation and localized waves of a variable-coefficient coupled Hirota system in an inhomogeneous optical fiber. Chaos Solitons Fract. 150, 110487 (2021)

  34. Zhou, T.Y., Tian, B., Chen, Y.Q., Shen, Y.: Painlevé analysis, auto-Bäcklund transformation and analytic solutions of a (2+1)-dimensional generalized Burgers system with the variable coefficients in a fluid. Nonlinear Dyn. 108, 2417 (2022)

  35. Wang, M., Tian, B., Zhou, T.Y.: Darboux transformation, generalized Darboux transformation and vector breathers for a matrix Lakshmanan-Porsezian-Daniel equation in a Heisenberg ferromagnetic spin chain. Chaos Solitons Fract. 152, 111411 (2021)

  36. Chen, J., Pelinovsky, D.E., White, R.E.: Periodic standing waves in the focusing nonlinear Schrödinger equation: Rogue waves and modulation instability. Physica D 405, 132378 (2020)

  37. Gao, X., Zhang, H.Q.: Rogue waves for the Hirota equation on the Jacobi elliptic CN-function background. Nonlinear Dyn. 101, 1159 (2020)

    Article  Google Scholar 

  38. Chen, J., Pelinovsky, D.E., White, R.E.: Rogue waves on the double-periodic background in the focusing nonlinear Schrödinger equation. Phys. Rev. E 100, 052219 (2019)

    Article  MathSciNet  Google Scholar 

  39. Liu, F.Y., Gao, Y.T., Yu, X., Ding, C.C.: Wronskian, Gramian, Pfaffian and periodic-wave solutions for a (3+1)-dimensional generalized nonlinear evolution equation arising in the shallow water waves. Nonlinear Dyn. 108, 1599 (2022)

  40. Ding, C.C., Gao, Y.T., Hu, L., Deng, G.F., Zhang, C.Y.: Vector bright soliton interactions of the two-component AB system in a baroclinic fluid. Chaos Solitons Fract. 142, 110363 (2021)

  41. Shen, Y., Tian, B.: Bilinear auto-Bäcklund transformations and soliton solutions of a (3+1)-dimensional generalized nonlinear evolution equation for the shallow water waves. Appl. Math. Lett. 122, 107301 (2021)

  42. Gao, X.T., Tian, B.: Water-wave studies on a (2+1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system. Appl. Math. Lett. 128, 107858 (2022)

  43. Gao, X.Y., Guo, Y.J., Shan, W.R.: In nonlinear optics, fluid mechanics, plasma physics or atmospheric science: symbolic computation on a generalized variable-coefficient Korteweg-de Vries equation. Acta. Math. Sin.-English Ser. (2022). https://doi.org/10.1007/s10114-022-9778-5

  44. Liu, F.Y., Gao, Y.T., Yu, X., Hu, L., Wu, X.H.: Hybrid solutions for the (2+1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation in fluid mechanics. Chaos Solitons Fract. 152, 111355 (2021)

  45. Gao, X.T., Tian, B., Feng, C.H.: Comment on “In oceanography, acoustics and hydrodynamics: An extended coupled (2+1)-dimensional Burgers system” [Chin. J. Phys. 70, 264 (2021)]. Chin. J. Phys. (2022). https://doi.org/10.1016/j.cjph.2021.11.019

  46. Gao, X.Y., Guo, Y.J., Shan, W.R., Yin, H.M., Du, X.X., Yang, D.Y.: Electromagnetic waves in a ferromagnetic film. Commun. Nonlinear Sci. Numer. Simul. 105, 106066 (2022)

  47. Zhou, T.Y., Tian, B., Chen, S.S., Wei, C.C., Chen, Y.Q.: Bäcklund transformations, Lax pair and solutions of a Sharma-Tasso-Olver-Burgers equation for the nonlinear dispersive waves. Mod. Phys. Lett. B 35, 2150421 (2021)

  48. Shen, Y., Tian, B., Zhou, T.Y., Gao, X.T.: Shallow-water-wave studies on a (2+1)-dimensional Hirota-Satsuma-Ito system: X-type soliton, resonant Y-type soliton and hybrid solutions. Chaos Solitons Fract. 157, 111861 (2022)

  49. Guo, B., Ling, L., Liu, Q.P.: Nonlinear Schrödinger equation: generalized Darboux transformation and rogue wave solutions. Phys. Rev. E 85, 026607 (2012)

    Article  Google Scholar 

  50. Guo, B., Ling, L., Liu, Q.P.: High-order solutions and generalized Darboux transformations of derivative nonlinear Schrödinger equations. Stud. Appl. Math. 130, 317 (2013)

    Article  MathSciNet  Google Scholar 

  51. Priya, N.V., Senthilvelan, M., Lakshmanan, M.: Akhmediev breathers, Ma solitons, and general breathers from rogue waves: a case study in the Manakov system. Phys. Rev. E 88, 022918 (2013)

    Article  Google Scholar 

  52. Wei, G.M., Lu, Y.L., Xie, Y.Q., Zheng, W.X.: Lie symmetry analysis and conservation law of variable-coefficient Davey-Stewartson equation, Comput. Math. Appl. 75, 3420 (2018)

  53. Guan, S.N., Wei, G.M., Li, Q.: Lie symmetry analysis, optimal system and conservation law of a generalized (2+1)-dimensional Hirota-Satsuma-Ito equation, Mod. Phys. Lett. B 35, 2150515 (2021)

  54. Liang, Y.Q., Wei, G.M., Li, X.N.: New variable separation solutions and nonlinear phenomena for the (2+1)-dimensional modified Korteweg-de Vries equation, Commun. Nonlinear Sci. Numer. Simulat. 16, 603 (2011)

  55. Liang, Y.Q., Wei, G.M., Li, X.N.: Transformations and multi-solitonic solutions for a generalized variable-coefficient Kadomtsev-Petviashvili equation, Comput. Math. Appl. 61, 3268 (2011)

Download references

Acknowledgements

We express our sincere thanks to all the members of our discussion group for their valuable comments.

Funding

This work has been supported by the National Natural Science Foundation of China under Grant No. 11772017, and by the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Tian Gao or Xin Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lax pair corresponding to Eq. (1) has been constructed as [9, 11]

$$\begin{aligned} \begin{aligned}&\Phi _x=(\lambda ^2U_2+\lambda U_1+U_0)\Phi =U\Phi ,\\&\Phi _t=V\Phi , \end{aligned} \end{aligned}$$
(A.1)

where \(\Phi \) is the eigenfunction corresponding to the complex spectral parameter \(\lambda \),

$$\begin{aligned}&\Phi =\begin{pmatrix} \phi (x,t,\lambda ) \\ \varphi (x,t,\lambda ) \end{pmatrix},~~~ V=\begin{pmatrix} v_1 &{} v_2 \\ v_3 &{} -v_1 \\ \end{pmatrix},~~~\\&U_2=\begin{pmatrix} -\frac{i}{a-b} &{} 0 \\ 0 &{} \frac{i}{a-b} \\ \end{pmatrix},~~~ U_1=\begin{pmatrix} 0 &{} -u^* \\ u &{} 0 \\ \end{pmatrix},~~~\\&U_0=\begin{pmatrix} -\frac{id}{2(a-b)}+(\frac{ia}{4}-\frac{ib}{2})|u|^2 &{} 0 \\ 0 &{} \frac{id}{2(a-b)}-(\frac{ia}{4}-\frac{ib}{2})|u|^2 \\ \end{pmatrix},~~~\\&v_1=-\frac{2i}{(a-b)^2}\lambda ^4-\left[ \frac{2id}{(a-b)^2}-i|u|^2\right] \lambda ^2 \\&\qquad -\frac{id^2}{2(a-b)^2}\\&\qquad -\frac{i}{8}(a^2-ab-2b^2)|u|^4-\frac{a-2b}{4}(-u^*u_x+uu^*_x),\\&v_2=-\frac{2}{a-b}u^*\lambda ^3+\left( -\frac{d}{a-b}u^*+\frac{a}{2}|u|^2u^*-iu^*_x\right) \lambda ,\\&v_3=\frac{2}{a-b}u\lambda ^3+\left( \frac{d}{a-b}u-\frac{a}{2}|u|^2u-iu_x\right) \lambda , \end{aligned}$$

\(\phi (x,t,\lambda )\) and \(\varphi (x,t,\lambda )\) are the functions of x, t and \(\lambda \), and \(a\ne b\). It can be verified that the compatibility condition \(U_t-V_x+UV-VU=0\) leads to Eq. (1).

The Nth-order analytic solutions in terms of the determinant expression for Eq. (1) have been given as [11]

$$\begin{aligned} \begin{aligned}&u[N]=\frac{1}{\rho _N^2}\left( u-\frac{2i}{a-b}\frac{\text {Det}(\delta _{11})}{\text {Det}(\delta _{12})}\right) , \end{aligned} \end{aligned}$$
(A.2)

where the sign “[N]” means that the relevant solutions are the Nth-order analytic solutions, \(\delta _{11}=(A_1,A_2,\ldots ,A_N)^{\mathrm{T}}\), \(\delta _{12}=(B_1,B_2,\ldots ,B_N)^{\mathrm{T}}\),

$$\begin{aligned}&A_k=(\varphi _k,\lambda _k\phi _k,\ldots ,\lambda _k^{N-3}\phi _k,\lambda _k^{N-2}\varphi _k,-\lambda _k^N\varphi _k)^{\mathrm{T}},\nonumber \\&B_k=(\varphi _k,\lambda _k\phi _k,\ldots ,\lambda _k^{N-3}\phi _k,\lambda _k^{N-2}\varphi _k,\lambda _k^{N-1}\phi _k)^{\mathrm{T}},\nonumber \\ \end{aligned}$$
(A.3)

for \(N=2m\); \(\delta _{11}=(C_1,C_2,\ldots ,C_N)^{\mathrm{T}}\), \(\delta _{12}=(D_1,D_2,\ldots ,D_N)^{\mathrm{T}}\),

$$\begin{aligned}&C_k=(\phi _k,\lambda _k\varphi _k,\ldots ,\lambda _k^{N-3}\phi _k,\lambda _k^{N-2}\varphi _k,-\lambda _k^N\varphi _k)^{\mathrm{T}},\nonumber \\&D_k=(\phi _k,\lambda _k\varphi _k,\ldots ,\lambda _k^{N-3}\phi _k,\lambda _k^{N-2}\varphi _k,\lambda _k^{N-1}\phi _k)^{\mathrm{T}},\nonumber \\ \end{aligned}$$
(A.4)

for \(N=2m+1\), m is a nonnegative integer and \(k=1,2,\ldots ,N\). Additionally, similar to the results in Refs. [10, 11], it can check that \(\rho _N\) has the form of

$$\begin{aligned} \begin{aligned}&\rho _N=\exp [i\varpi (x,t)], \end{aligned} \end{aligned}$$
(A.5)

where \(\varpi (x,t)\) is a real function. Therefore, we have

$$\begin{aligned} \begin{aligned}&|\rho _N|=1\Longleftrightarrow \rho _N^*=\rho _N^{-1}. \end{aligned} \end{aligned}$$

This indicates that \(\rho _N\) does not contribute to the calculation of \(|u[N]|^2\).

Eigenvalues and eigenfunctions for Lax Pair (A.1) have to admit the symmetry conditions as

\((1)\lambda _k=-\lambda _k^*\), and \(\phi _k^*(x,t,\lambda _k)=\varphi _k(x,t,\lambda _k)\);

\((2)\lambda _{2k}{=}\lambda _{2k{-}1}^*\), and \(\phi _{2k}(x,t,\lambda _{2k}){=}{-}\varphi _{2k{-}1}^*(x,t,\lambda _{2k{-}1})\), \(\varphi _{2k}(x,t,\lambda _{2k}){=}\phi _{2k-1}^*(x,t,\lambda _{2k-1})\),

where \(\lambda _k\)’s are the complex spectral parameters, \(\phi _k(x,t,\lambda _k)\) and \(\varphi _k(x,t,\lambda _k)\) are the functions of x, t and \(\lambda _k\),

$$\begin{aligned} \begin{aligned}&\Phi _k(x,t,\lambda _k)=\begin{pmatrix} \phi _k(x,t,\lambda _k) \\ \varphi _k(x,t,\lambda _k) \end{pmatrix}~ \end{aligned} \end{aligned}$$

is the vector eigenfunction which solves Lax Pair (A.1) with \(\lambda =\lambda _k\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, CC., Gao, YT., Yu, X. et al. N-fold generalized Darboux transformation and breather–rogue waves on the constant/periodic background for a generalized mixed nonlinear Schrödinger equation. Nonlinear Dyn 109, 989–1004 (2022). https://doi.org/10.1007/s11071-022-07423-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07423-5

Keywords

Navigation