Skip to main content
Log in

Efficient modeling and order reduction of new 3D beam elements with warping via absolute nodal coordinate formulation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

To describe the particular mechanical behaviors of beams with both uniform and non-uniform cross sections, such as the bidirectional bending, torsion-bending coupling, the torsion-related warping, the cross-sectional stretch, and Wagner effects, a series of efficient higher-order beam elements (HOBEs) is proposed in the frame of the absolute nodal coordinate formulation (ANCF). In the proposed HOBEs, a new mixed kinematic description of beam elements is introduced via the warping functions and slope vectors. Compared with the existing HOBEs using Lagrange polynomials, the additional degrees of freedom per element proposed to accurately describe the warping deformation are dramatically reduced. Moreover, the tremendous Von-Mises stress on the cross sections in the existing HOBEs does not occur in the proposed new HOBEs. Compared with the classical nonlinear finite elements formulations, the complete 3D strain state with the higher-order terms allows the cross-sectional stretch and avoids the expensive calculations of the extra warping and Wagner strain measures and their derivatives. Moreover, the transverse integration allows an arbitrary section shape to vary along the beam axial direction. Thus, these new HOBEs benefit from the efficient warping description in the classical FE and inherit the advantages of 3D-continuum theory in the ANCF. In addition, the shear locking is alleviated due to the ability to capture the non-uniform distribution of shear stress, and the Poisson locking is addressed via the enhanced continuum mechanics approach. Finally, the proposed HOBEs are validated and compared using statics and dynamics undergoing complex significant deformations on various benchmarks, FEs, commercial codes, and experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of data and materials

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  2. Cowper, G.R.: The shear coefficient in Timoshenko’s beam theory. J. Appl. Mech. 33(2), 335–340 (1966)

    Article  MATH  Google Scholar 

  3. Popescu, B., Hodges, D.H.: On asymptotically correct Timoshenko-like anisotropic beam theory. Int. J. Solids Struct. 37(3), 535–558 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Wagner, H.: Verdrehung und knickung von offenen profilen (Torsion and buckling of open sections). In: NACA Tech, Washington, DC, Memorandum No. 807 (1936)

  5. Simo, J.C.: A finite strain beam formulation. The three-dimensional dynamic problem. Part I. Comput. Methods Appl. Mech. Eng. 49(1), 55–70 (1985)

    Article  MATH  Google Scholar 

  6. Simo, J.C., Vu-Quoc, L.: On the dynamics of flexible beams under large overall motions—the plane case: part II. J. Appl. Mech. 53(4), 855–863 (1986)

    Article  MATH  Google Scholar 

  7. Jelenic, G., Crisfield, M.A.: Geometrically exact 3D beam theory: implementation of a strain-invariant finite element for statics and dynamics. Comput. Methods Appl. Mech. Eng. 171(1–2), 141–171 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Simo, J.C., Vu-Quoc, L.A.: Geometrically-exact rod model incorporating shear and torsion-warping deformation. Int. J. Solid Struct. 27(3), 371–393 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Pi, Y.L., Bradford, M.A., Uy, B.: A spatially curved-beam element with warping and Wagner effects. Int. J. Numer. Methods Eng. 63(9), 1342–1369 (2005)

    Article  MATH  Google Scholar 

  10. Manta, D., Goncalves, R.: A geometrically exact Kirchhoff beam model including torsion warping. Comput. Struct. 177, 192–203 (2016)

    Article  Google Scholar 

  11. Goncalves, R.: A shell-like stress resultant approach for elastoplastic geometrically exact thin-walled beam finite elements. Thin-Walled Struct. 103, 263–272 (2016)

    Article  Google Scholar 

  12. Rong, J., Wu, Z., Liu, C., Brüls, O.: Geometrically exact thin-walled beam including warping formulated on the special Euclidean group SE(3). Comput. Methods Appl. Mech. Eng. 369, 113062 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wackerfuss, J., Gruttmann, F.: A nonlinear Hu-Washizu variational formulation and related finite-element implementation for spatial beams with arbitrary moderate thick cross-sections. Comput. Methods Appl. Mech. Eng. 200(17–20), 1671–1690 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Peres, N., Gonalves, R., Camotim, D.: A geometrically exact beam finite element for curved thin-walled bars with deformable cross-section. Comput. Methods Appl. Mech. Eng. 381(3), 113804 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Han, S., Bauchau, O.A.: Nonlinear, three-dimensional beam theory for dynamic analysis. Multibody Syst. Dyn. 41, 173–200 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Meier, C., Popp, A., Wall, W.A.: Geometrically exact finite element formulations for slender beams: Kirchhoff-Love theory versus Simo-Reissner theory. Arch. Computat. Methods Eng. 26(1), 163–243 (2019)

    Article  MathSciNet  Google Scholar 

  17. Duan, L., Zhao, J.: A geometrically exact cross-section deformable thin-walled beam finite element based on generalized beam theory. Comput. Struct. 218, 32–59 (2019)

    Article  Google Scholar 

  18. Jonker, J.B.: Three-dimensional beam element for pre- and post-buckling analysis of thin-walled beams in multibody systems. Multibody Syst. Dyn. 52(1), 59–93 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Arora, A., Kumar, A., Steinmann, P.: A computational approach to obtain nonlinearly elastic constitutive relations of special Cosserat rods. Comput. Methods Appl. Mech. Eng. 350, 295–314 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  20. Schardt, R.: Verallgemeinerte Technische Biegetheorie. Springer, Berlin (1989)

    Book  Google Scholar 

  21. Besseling, J.F.: Non-linear theory for elastic beams and rods and its finite element representation. Comput. Methods Appl. Mech. Eng. 31(2), 205–222 (1982)

    Article  MATH  Google Scholar 

  22. Eisenberger, M.: An exact higher-order beam element. Comput. Struct. 81(3), 147–152 (2003)

    Article  Google Scholar 

  23. Corre, G.: Higher-order elastoplastic beam models. Ph.D. Thesis, Universite Paris-Est (2018)

  24. Matikainen, M.K., Dmitrochenko, O., Mikkola, A.: Beam elements with trapezoidal cross section deformation modes based on the absolute nodal coordinate formulation. In: International Conference of Numerical Analysis and Applied Mathematics, Rhodes, Greece (2010)

  25. Li, P., Gantoi, F.M., Shabana, A.A.: Higher-order representation of the beam cross-sectional deformation in large displacement finite element analysis. J. Sound Vib. 330(26), 6495–6508 (2011)

    Article  Google Scholar 

  26. Shen, Z., Li, P., Liu, C., Hu, G.: A finite element beam model including cross-section distortion in the absolute nodal coordinate formulation. Nonlinear Dyn. 77(3), 1019–1033 (2014)

    Article  Google Scholar 

  27. Orzechowski, G., Shabana, A.A.: Analysis of warping deformation modes using higher-order ANCF beam element. J. Sound Vib. 363, 428–445 (2016)

    Article  Google Scholar 

  28. Ebel, H., Matikainen, M.K., Hurskainen, V.V., Mikkola, A.: Higher-order beam elements based on the absolute nodal coordinate formulation for three-dimensional elasticity. Nonlinear Dyn. 88(2), 1075–1091 (2017)

    Article  Google Scholar 

  29. Patel, M., Shabana, A.A.: Locking alleviation in the large displacement analysis of beam elements: the strain split method. Acta. Mech. 229, 2923–2946 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Carrera, E., Giunta, G., Petrolo, M.: Beam Structures: Classical and Advanced Theories. Wiley, New York (2011)

    Book  MATH  Google Scholar 

  31. Bauchau, O.A., Han, S., Mikkola, A., Matikainen, M.K., Gruber, P.: Experimental validation of flexible multibody dynamics beam formulations. Multibody Syst. Dyn. 34(4), 373–389 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bauchau, O.A., Betsch, P., Cardona, A., Gerstmayr, J., Jonker, B., Masarati, P., Sonneville, V.: Validation of flexible multibody dynamics beam formulations using benchmark problems. Multibody Syst. Dyn. 37(1), 29–48 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tang, Y., Hu, H., Tian, Q.: A condensed algorithm for adaptive component mode synthesis of viscoelastic flexible multibody dynamics. Int. J. Numer. Methods Eng. 122(2), 609–637 (2021)

    Article  MathSciNet  Google Scholar 

  34. Tasora, A., Benatti, S., Mangoni, D., Garziera, R.: A geometrically exact isogeometric beam for large displacements and contacts. Comput. Methods Appl. Mech. Engrg. 358, 112635 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. J. Mech. Des. 123(4), 614–621 (2001)

    Article  Google Scholar 

  36. Gerstmayr, J., Matikainen, M.K., Mikkola, A.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 20, 359–384 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  37. Romero, I.: A comparison of finite elements for nonlinear beams: the absolute nodal coordinate and geometrically exact formulations. Multibody Syst. Dyn. 20(1), 51–68 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Bauchau, O.A., Han, S., Mikkola, A., Matikainen, M.K.: Comparison of the absolute nodal coordinate and geometrically exact formulations for beams. Multibody Syst. Dyn. 32(1), 67–85 (2014)

    Article  MathSciNet  Google Scholar 

  39. Schwab, A.L., Merjaard, J.P.: Comparison of three-dimensional flexible beam elements for dynamic analysis: classical finite element formulation and absolute nodal coordinate formulation. J. Comput. Nonlin. Dyn. 5(1), 11010 (2010)

    Article  Google Scholar 

  40. Nachbagauer, K.: State of the art of ANCF elements regarding geometric description, interpolation strategies, definition of elastic forces, validation and the locking phenomenon in comparison with proposed beam finite elements. Arch. Computat. Methods Eng. 21(3), 293–319 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Schwab, A.L., Meijaard, J.P.: Comparison of three-dimensional flexible beam elements for dynamic analysis: finite element method and absolute nodal coordinate formulation. In: Proceedings of ASME International Design Engineering Technical Conferences and Computer and Information in Engineering Conference, Long Beach, CA (2005)

  42. Hussein, B.A., Sugiyama, H., Shabana, A.A.: Coupled deformation modes in the large deformation finite-element analysis: problem definition. J Comput Nonlinear Dyn. 2(2), 146–154 (2007)

    Article  Google Scholar 

  43. Nachbagauer, K., Gruber, P., Gerstmayr, J.: A 3D shear deformable finite element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 28, 77–96 (2013)

    Article  MATH  Google Scholar 

  44. Matikainen, M.K., Valkeapää, A.I., Mikkola, A., Schwab, A.L.: A study of moderately thick quadrilateral plate elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 31(3), 309–338 (2014)

    Article  MathSciNet  Google Scholar 

  45. Carpenter, N., Belytschko, T., Stolarski, H.: Locking and shear scaling factors in C0 bending elements. Comput. Struct. 22(1), 39–52 (1986)

    Article  MATH  Google Scholar 

  46. Tinsley, B., Shabana, A.A.: Convergence characteristics of geometrically-accurate spatial finite elements. J. Comput. Nonlin. Dyn. 16(1), 011006 (2021)

    Article  Google Scholar 

  47. Shabana, A.A., Xu, L.: Rotation-based finite elements: reference-configuration geometry and motion description. Acta Mech. Sin. 37(1), 105–126 (2021)

    Article  MathSciNet  Google Scholar 

  48. Negrut, D., Rampalli, R., Ottarsson, G., Sajdak, A.: On an implementation of the Hilber-Hughes-Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics. J. Comput. Nonlin. Dyn. 2(1), 73–85 (2007)

    Article  Google Scholar 

  49. Wang, Y., Wynn, A., Palacios, R.: Nonlinear modal aeroservoelastic analysis framework for flexible aircraft. AIAA J. 54(10), 3075–3090 (2016)

    Article  Google Scholar 

  50. Tian, Q., Lan, P., Yu, Z.: Model-order reduction of flexible multibody dynamics via free-interface component mode synthesis method. J. Comput. Nonlin. Dyn. 15(10), 101008 (2020)

    Article  Google Scholar 

  51. Luo, K., Hu, H., Liu, C., Tian, Q.: Model order reduction for dynamic simulation of a flexible multibody system via absolute nodal coordinate formulation. Comput. Methods Appl. Mech. Eng. 324, 573–594 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  52. Kim, E., Kim, H., Cho, M.: Model order reduction of multibody system dynamics based on stiffness evaluation in the absolute nodal coordinate formulation. Nonlinear Dyn. 87(3), 1901–1915 (2017)

    Article  Google Scholar 

  53. Hou, Y., Liu, C., Hu, H.: Component-level proper orthogonal decomposition for flexible multibody systems. Comput. Methods Appl. Mech. Eng. 361, 112690 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  54. Amsallem, D., Farhat, C.: On the stability of reduced-order linearized computational fluid dynamics models based on POD and Galerkin Projection: descriptor vs non-descriptor forms. In: Reduced-Order Methods for Modeling and Computational Reduction. Springer, Cham, Switzerland (2014)

  55. Lieu, T., Farhat, C., Lesoinne, M.: Reduced-order fluid/structure modeling of a complete aircraft configuration. Comput. Methods Appl. Mech. Eng. 195(41–43), 5730–5742 (2006)

    Article  MATH  Google Scholar 

  56. Amabili, M., Sarkar, A., Paidoussis, M.P.: Chaotic vibrations of circular cylindrical shells: galerkin versus reduced-order models via the proper orthogonal decomposition method. J. Sound Vib. 290(3–5), 736–762 (2006)

    Article  Google Scholar 

  57. Amabili, M., Touzé, C.: Reduced-order models for nonlinear vibrations of fluid-filled circular cylindrical shells: Comparison of POD and asymptotic nonlinear normal modes methods. J. Fluid Struct. 23(6), 885–903 (2007)

    Article  Google Scholar 

  58. Epureanu, B.I.: A parametric analysis of reduced order models of viscous flows in turbomachinery. J. Fluid Struct. 17(7), 971–982 (2003)

    Article  Google Scholar 

  59. Jin, Y., Lu, K., Hou, L., Chen, Y.: An adaptive proper orthogonal decomposition method for model order reduction of multi-disc rotor system. J. Sound Vib. 411, 210–231 (2017)

    Article  Google Scholar 

  60. Lu, K., Jin, Y., Chen, Y., Yang, Y., Lei, H., Zhang, Z., Li, Z., Fu, C.: Review for order reduction based on proper orthogonal decomposition and outlooks of applications in mechanical systems. Mech. Syst. Signal Pr. 123, 264–297 (2019)

    Article  Google Scholar 

  61. Jeong, Y.M., Kim, J.S.: On the stable mode selection for efficient component mode synthesis of geometrically nonlinear beams. J. Mech. Sci. Tech. 34(7), 2961–2973 (2020)

    Article  Google Scholar 

  62. Bampton, M.C.C., Craig, J.R.R.: Coupling of substructures for dynamic analyses. AIAA J. 6(7), 1313–1319 (1968)

    Article  MATH  Google Scholar 

  63. Pichler, F., Witteveen, W., Fischer, P.: A complete strategy for efficient and accurate multibody dynamics of flexible structures with large lap joints considering contact and friction. Multibody Syst. Dyn. 40(4), 407–436 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  64. Ziegler, P., Kazaz, L., Eberhard, P.: Achieving high-precision transient local contact behaviour without introducing unphysical dynamics. Mech. Mach. Theory 148, 103785 (2020)

    Article  Google Scholar 

  65. Patalano, S., Furnari, A.M., Vitolo, F., Dion, J.-L., Plateaux, R., Renaud, F.: A critical exposition of model order reduction techniques: application to a slewing flexible beam. Arch. Comput. Methods Eng. 28(1), 31–52 (2021)

    Article  MathSciNet  Google Scholar 

  66. Yoo, H.H., Ryan, R.R., Scott, R.A.: Dynamics of flexible beams undergoing overall motions. J. Sound Vib. 181(2), 261–278 (1995)

    Article  MATH  Google Scholar 

  67. Liu, Z., Hong, J., Liu, J.: Complete geometric nonlinear formulation for rigid-flexible coupling dynamics. J. Cent. South Univ. Technol. 16(1), 119–124 (2009)

    Article  Google Scholar 

  68. Slaats, P.M.A., Jongh, J.D., Sauren, A.A.H.J.: Model reduction tools for nonlinear structural dynamics. Comput. Struct. 54(6), 1155–1171 (1995)

    Article  MATH  Google Scholar 

  69. Vizzaccaro, A., Givois, A., Longobardi, P., Shen, Y., Deü, J.F., Salles, L., Touzé, C., Thomas, O.: Non-intrusive reduced-order modelling for the dynamics of geometrically nonlinear flat structures using three-dimensional finite elements. Comput. Mech. 66(6), 1293–1319 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  70. Wu, L., Tiso, P., Tatsis, K., Chatzi, E., Keulen, F.: A modal derivatives enhanced Rubin substructuring method for geometrically nonlinear multibody systems. Multibody Syst. Dyn. 45(1), 57–85 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  71. Tang, Y., Hu, H., Tian, Q.: Model order reduction based on successive linearizations for flexible multibody dynamics. Int. J. Numer. Methods Eng. 118(3), 159–180 (2019)

    Google Scholar 

  72. Sonneville, V., Scapolan, M., Shan, M.H., Bauchau, O.A.: Modal reduction procedures for flexible multibody dynamics. Multibody Syst. Dyn. 51(4), 377–418 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  73. Sugiyama, H., Gerstmayr, J., Shabana, A.A.: Deformation modes in the finite element absolute nodal coordinate formulation. J. Sound Vib. 298(4–5), 1129–1149 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  74. Sopanen, J.T., Mikkola, A.M.: Description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dyn. 34(1–2), 53–74 (2003)

    Article  MATH  Google Scholar 

  75. Ren, H.: A simple absolute nodal coordinate formulation for thin beams with large deformations and large rotations. J. Comput. Nonlin. Dyn. 10(6), 061005 (2015)

    Article  Google Scholar 

  76. Heyliger, P.R., Reddy, J.N.: A higher-order beam finite element for bending and vibration problems. J. Sound Vib. 126(2), 309–326 (1988)

    Article  MATH  Google Scholar 

  77. Shabana, A.A.: Computational Continuum Mechanics. the, 3rd edn. Wiley, New York (2018)

    Book  MATH  Google Scholar 

  78. Mazor, D., Rand, O.: The influence of the in-plane warping on the behavior of thin-walled beams. Thin-Walled Struct. 37(4), 363–390 (2000)

    Article  Google Scholar 

  79. Rand, O.: In-plane warping effects in thin-walled box beams. AIAA J 38(3), 542–544 (2000)

    Article  Google Scholar 

  80. Dowell, E.H., Traybar, J.J.: An experimental study of the nonlinear stiffness of a rotor blade undergoing flap, lag, and twist deformations. In: Aerospace and mechanical science report, Princeton University, Memorandum No. 1194–1257 (1975)

  81. Gere, J.M., Timoshenko, S.P.: Mechanics of Materials, the, 2nd edn. Van Nostrand Reinhold, New York (1984)

    Google Scholar 

  82. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  83. Bozorgmehri, B., Hurskainen, V.V., Matikainen, M.K., Mikkola, A.: Dynamic analysis of rotating shafts using the absolute nodal coordinate formulation. J. Sound Vib. 453, 214–236 (2019)

    Article  Google Scholar 

  84. Chandra, R., Stemple, A.D., Chopra, I.: Thin-walled composite beams under bending, torsional, and extensional loads. J. Aircraft 27(7), 619–626 (1990)

    Article  Google Scholar 

  85. Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J. Appl. Mech. 60(2), 371–375 (1993)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under the Grants 11832005 and 12125201. The ABAQUS results in Sect. 4.2 provided by professor Yunqing Zhang from Huazhong University of Science and Technology and the Nastran results in Table 8 provided by Songhao Shi from Nanjing University of Aeronautics and Astronautics are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Hu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

The existing HOBEs

The existing HOBEs (e.g., B42 [26, 27, 29], 3363 [28], 34X3 [28], and B4 [26]) introduced here are the complete polynomial based on Pascal's triangle. And some existing HOBEs with incomplete polynomial can be found in the works by Matikainen et al. [24] and Ebel et al. [28], just to name a few.

The quadratic beam element BE42

To test the performance of locking alleviation, the higher-order BE42 was studied by the standard CMA [26, 27] and subsequently studied by the strain split method [29]. Compared with the BE24, the main improvement in the BE42 is using the displacement field given by Eq. (5) with quadratic interpolation in the transverse directions. As shown in Table 1, the BE42 possess three additional directional derivatives for each node of the two-node to describe the cross-sectional warping. As displayed in Table 2, the vector of element nodal coordinates is defined as \({\mathbf{e}} = \left[ {{\mathbf{e}}_{1}^{{\text{T}}} \;\;{\mathbf{e}}_{2}^{{\text{T}}} \;} \right]^{{\text{T}}} \in {\mathbb{R}}^{42}\). Thus

$$ {\mathbf{S}}^{{{\text{BE}}42}} = {\mathbf{s}}^{{{\text{BE}}42}} \otimes {\mathbf{I}} = [\underbrace {{{\mathbf{s}}_{1}^{{{\text{BE24}}}} \;\;S_{1,22} \;\;S_{1,23} \;\;S_{1,33} }}_{{{\mathbf{s}}_{1}^{{{\text{BE42}}}} }}\;\;\underbrace {{ \cdots_{{}} }}_{{{\mathbf{s}}_{2}^{{{\text{BE42}}}} }}\;] \otimes {\mathbf{I}} \in {\mathbb{R}}^{3 \times 42} . $$
(31)

What is more, the beam element BE42 studied in [26, 27, 29] is also the beam element 3273 studied in [28].

The cubic beam element 34X3

As shown in Table 2, the beam element 34X3 is proposed using the displacement field given by Eq. (5) considering cubic interpolation in the transverse directions. The vector of nodal coordinates is defined as \(\;{\mathbf{e}} = \left[ {{\mathbf{e}}_{1}^{{\text{T}}} \;\;{\mathbf{e}}_{2}^{{\text{T}}} } \right.\;\;\;\left. {{\mathbf{e}}_{3}^{{\text{T}}} \;\;{\mathbf{e}}_{4}^{{\text{T}}} } \right]^{{\text{T}}} \in {\mathbb{R}}^{120}\), where \({\mathbf{e}}_{I}^{{\text{T}}} = \left[ {{\mathbf{r}}_{I}^{{\text{T}}} \;{\mathbf{r}}_{I,y}^{{\text{T}}} \;{\mathbf{r}}_{I,z}^{{\text{T}}} \;{\mathbf{r}}_{I,yy}^{{\text{T}}} \;{\mathbf{r}}_{I,yz}^{{\text{T}}} \;{\mathbf{r}}_{I,zz}^{{\text{T}}} \;{\mathbf{r}}_{I,yyy}^{{\text{T}}} \;{\mathbf{r}}_{I,yyz}^{{\text{T}}} \;{\mathbf{r}}_{I,yzz}^{{\text{T}}} \;{\mathbf{r}}_{I,zzz}^{{\text{T}}} } \right]\;\), \(i = 1,\;2,\;3,\;4\). Thus,

$$ {\mathbf{S}}^{{{\text{34X3}}}} = {\mathbf{s}}^{{{\text{34X3}}}} \otimes {\mathbf{I}}{ = }[\underbrace {{{\mathbf{s}}_{1}^{{{3433}}} \;S_{1,22} \;S_{1,23} \;S_{1,33} \;S_{1,222} \;S_{1,223} \;S_{1,233} \;S_{1,333} }}_{{{\mathbf{s}}_{1}^{{{\text{34X3}}}} }}\;\;\underbrace {{ \cdots_{{}} }}_{{{\mathbf{s}}_{2}^{{{\text{34X3}}}} }}\;\;\underbrace {{ \cdots {}_{{}}}}_{{{\mathbf{s}}_{3}^{{{\text{34X3}}}} }}\;\;\underbrace {{ \cdots_{{}} }}_{{{\mathbf{s}}_{4}^{{{\text{34X3}}}} }}] \otimes {\mathbf{I}}. $$
(32)

Warping

5.1 Rectangular beam

Assuming that the warping function of the rectangular cross section takes the form of the product of hyperbolic and sine functions as follows [11],

$$ \omega \left( {y,z} \right) = yz + \sum\limits_{n = 1,3,5 \cdots }^{\infty } {c_{n} \sin \left( {\frac{{n{\uppi }}}{H}z} \right)} \sinh \left( {\frac{{n{\uppi }}}{H}y} \right), $$
(33)

where \(c_{n} = ( - 1)^{{{{\left( {n + 1} \right)} \mathord{\left/ {\vphantom {{\left( {n + 1} \right)} 2}} \right. \kern-\nulldelimiterspace} 2}}} \frac{{8H^{2} }}{{n^{3} {\uppi }^{3} \cosh \left( {{{n{\uppi }W} \mathord{\left/ {\vphantom {{n{\uppi }W} {\left( {2H} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2H} \right)}}} \right)}}\), H and W are the height and width. For a square beam, H = W holds in Eq. (33).

I-section beam

The approximate warping function for the I-section is assumed as follows [10,11,12, 17],

$$ \omega_{{{\text{top}}\;{\text{flange}}}} \left( {y,z} \right) = y\left( {z - \overline{h}} \right),\;\omega_{{{\text{web}}}} \left( {y,z} \right) = - yz,\;\omega_{{{\text{bottom}}\;{\text{flange}}}} \left( {y,z} \right) = y\left( {z + \overline{h}} \right), $$

where \(\overline{h} = H - T_{{{\text{flange}}}}\) is the distance between the mid-lines of the flanges and displayed in Fig. 7.

In the I-section beam, the top flange, web, and bottom flange have their own warping functions. Thus, the warping-related function \(\overline{S}\) can be written as the following compact form,

$$ \overline{S}_{I} = \omega \left( {y,z} \right)f_{I} \left( x \right) = y\overline{z}f_{I} \left( x \right), $$
(35)

where \(\overline{z}_{{{\text{top}}\;{\text{flange}}}} = z - \overline{h}\), \(\overline{z}_{{{\text{web}}}} = - z\) and \(\overline{z}_{{{\text{botton}}\;{\text{flange}}}} = z + \overline{h}\).

In the previous works [10,11,12], the shear-related energy part is modified by the approximate warping function of Eq. (34) and the shear correction factors. However, a so-called “geometrically exact cross section deformable thin-walled beam” in [17] was proposed via more cross-sectional modes than [10,11,12]. As a result, it can get a more detailed description of the cross-sectional deformation and thus lead to a more flexible torsion response. Similarly, in this study, BE24c-ω and MGD30c-ω are examined with k2 = k3 = 0.3868 [2]. Moreover, to get more cross-sectional modes, the quadratic elements BE24c-ω-II and MGD30c-ω-II are also examined without shear energy correction. The dimensionless shape functions related with the additional nodal coordinates \({\mathbf{r}}_{{i,y^{2} }}\), \({\mathbf{r}}_{i,yz}\), \({\mathbf{r}}_{{i,z^{2} }}\), \({\mathbf{r}}_{{i,y^{3} }}\), \({\mathbf{r}}_{{i,y^{2} z}}\), \({\mathbf{r}}_{{i,yz^{2} }}\), and \({\mathbf{r}}_{{i,z^{3} }}\) are depicted in Table

Table 11 Computation time of the unbalanced shaft (T1: the pre-processing time; T2: the solving time; T3(= T1 + T2): the total time; \(T = T_{3}^{{}} /T_{3}^{s} \times 100\%\);\(T_{3}^{s}\): the total time of the standard one)

12, same rules with the BE24c-ω-II.

Hollow rectangular beam

According to the work of Chandra et al. [84], the warping function for the hollow rectangular beam in Fig. 7c is assumed to be

$$ \omega \left( {y,z} \right) = yz\tfrac{{\left( {W - H} \right)}}{{\left( {W + H} \right)}}. $$
(36)

Tapered beam

In the tapered beam of a linearly varying cross section height, the upper and lower limits of integral terms for the initial configuration are linear functions of the axial generalized coordinates [47]. That is, \(z_{u} = {H \mathord{\left/ {\vphantom {H 2}} \right. \kern-\nulldelimiterspace} 2} + k_{s} x\) and \(z_{l} = - {H \mathord{\left/ {\vphantom {H 2}} \right. \kern-\nulldelimiterspace} 2} - k_{s} x\), where l, H, and ks are the length, height, and slope of beam element, respectively. Thus,

$$ z\left( x \right) = z_{u} - z_{l} = H + 2k_{s} x. $$
(37)

It is worth noting that the nonlinear functions of x for the upper and lower integral limits in Eq. (37) can account for the beam configuration of a nonlinearly varying cross section height.

Substituting Eq. (37) into Eq. (33) to get the warping function of the tapered beam when n = 1 as follows.

$$\omega \left( {y,z\left( x \right)} \right) = y\left( {H + 2k_{s} x} \right) + \frac{{8H^{2} }}{{{\uppi }^{3} \cosh \left( {{{{\uppi }W} \mathord{\left/ {\vphantom {{{\uppi }W} {\left( {2H} \right)}}} \right. \kern-\nulldelimiterspace} {\left( {2H} \right)}}} \right)}}\sin \left( {\frac{{n{\uppi }}}{H}\left( {H + 2k_{s} x} \right)} \right)\sinh \left( {\frac{{n{\uppi }}}{H}y} \right).$$
(38)

The integral of an irregular section

The integral of an irregular section is usually divided into n independent integrals of regular sections. Thus, the element elastic energy \(U^{\rm E}\) in Eq. (26) can be rewritten as.

$$ U^{\rm E} = \sum\limits_{i = 1}^{n} {U_{i}^{\rm E} } = \sum\limits_{i = 1}^{n} {\frac{1}{2}\left( {\int_{{V_{i} }} {{{\varvec{\upvarepsilon}}}:{\mathbf{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{E} }}^{0} } :{{\varvec{\upvarepsilon}}}dV_{i} + T_{i} W_{i} \int_{{L_{i} }} {{{\varvec{\upvarepsilon}}}:{\mathbf{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle\thicksim}$}}{E} }}^{\nu } } :{{\varvec{\upvarepsilon}}}dL_{i} } \right)} . $$
(39)

I-section beam

The I-section is divided into n = 3 rectangular regions to integrate independently, and the subscript i = 1, i = 2, and i = 3 in Eq. (39) represents the web, up flange, and bottom flange, respectively. \(T_{1} = H - 2T_{flange}\),\(\;W_{1} = W_{web}\), \(T_{2} = T_{3} = T_{flange}\), and \(\;W_{2} = \;W_{3} = W_{flange}\)

Hollow rectangular beam

The hollow rectangular is divided into n = 4 rectangular regions to integrate independently, and the subscript i = 1, i = 2, i = 3, and i = 4 in Eq. (39) represents the top, bottom, left, and right rectangular regions. \(T_{1} = T_{2} = T_{3} = T_{4} = T\),\(\;W_{1} = W_{2} = W\), and \(\;W_{3} = \;W_{4} = H - 2T\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Tian, Q. & Hu, H. Efficient modeling and order reduction of new 3D beam elements with warping via absolute nodal coordinate formulation. Nonlinear Dyn 109, 2319–2354 (2022). https://doi.org/10.1007/s11071-022-07547-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07547-8

Keywords

Navigation