Skip to main content
Log in

Inverse scattering and soliton solutions of high-order matrix nonlinear Schrödinger equation

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The Riemann–Hilbert problem and soliton solutions to the high-order nonlinear Schrödinger equation with matrix version is studied with an equivalent spectral problem. Moreover, a pair of Jost solutions \({\mathcal {J}}^{\pm }\), satisfied the asymptotic conditions \({\mathcal {J}}^{\pm }\rightarrow {\mathcal {I}}\) and matrix spectral problem, can be used to obtain the matrix Riemann–Hilbert problem. This work makes the crucial use of the inverse scattering for the studied equation. In the case of reflection-less, based on the two type of zero structures of \(\det (P^{+})\), the different soliton solutions are theoretically and graphically presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Matveev, V.E., Salle, M.A.: Darboux Transformation and Solitons. Springer, Berlin (1991)

    Book  Google Scholar 

  2. Bluman, G.M., Kumei, S.: Symmetries and Differential Equations. Springer, New York (1989)

    Book  Google Scholar 

  3. Ablowitz, M.J., Clarkson, P.A.: Solitons; Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  4. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transform. SIAM, Philadephia (1981)

    Book  Google Scholar 

  5. Novikov, S.P., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of Solitons: The Inverse Scattering Method. Consultants Bureau, New York (1984)

    MATH  Google Scholar 

  6. Hirota, R.: Direct Methods in Soliton Theory. Springer, Berlin (2004)

    Book  Google Scholar 

  7. Khater, A.H., Moussa, M.H.M., Abdul-Aziz, S.F.: Invariant variational principles and conservation laws for some nonlinear partial differential equations with constant coefficients-II. Chaos Soliton Fractal 15, 1–13 (2003)

    Article  Google Scholar 

  8. Cao, X.Q., Peng, K.C., Liu, M.Z., Zhang, C.Z., Guo, Y.N.: Variational principles for two compound nonlinear equations with variable coefficients. J. Appl. Comput. Mech. 7, 415–421 (2021)

    Google Scholar 

  9. Liu, M.Z., Cao, X.Q., Zhu, X.Q., Liu, B.N., Peng, K.C.: Variational principles and solitary wave solutions of generalized nonlinear Schrödinger equation in the ocean. J. Appl. Comput. Mech. 7, 1639–1648 (2021)

    Google Scholar 

  10. Gerdjikov, V.S., Vilasi, G., Yanovski, A.B.: Integrable Hamiltonian Hierarchies: Spectral and Geometric Methods. Springer, Berlin (2008)

    Book  Google Scholar 

  11. Doktorov, E.V., Leble, S.B.: A dressing method in mathematical physics. In: Mathematical Physics Studies. Springer, Dordrecht (2007)

  12. Zakharov, V.E., Shabat, A.B.: Integration of the nonlinear equations of mathematical physics by the method of inverse scattering II. Funct. Anal. Appl. 13, 166–174 (1979)

    Article  MathSciNet  Google Scholar 

  13. Tao, M.S., Dong, H.H.: N-soliton solutions of the coupled Kundu equations based on the Riemann–Hilbert method. Math. Probl. Eng. 2019, 3085367 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Wang, D.S., Zhang, D.J., Yang, J.: Integrable properties of the general coupled nonlinear Schrödinger equations. J. Math. Phys. 51, 023510 (2010)

    Article  MathSciNet  Google Scholar 

  15. Shepelsky, D., Zielinski, L.: The inverse scattering transform in the form of a Riemann–Hilbert problem for the Dullingottwald–Holm equation. Opuscula Mathematica 37, 167–187 (2017)

    Article  MathSciNet  Google Scholar 

  16. Ma, W.X.: Riemann–Hilbert problems and soliton solutions of a multicomponent mkdv system and its reduction. Math. Method Appl. Sci. 42, 1099–1113 (2019)

    Article  MathSciNet  Google Scholar 

  17. Yan, X.W.: Riemann-Hilbert method and multi-soliton solutions of the Kundu-nonlinear Schrödinger equation. Nonlinear Dyn. 102, 2811–2819 (2020)

    Article  Google Scholar 

  18. Wazwaz, A.M., El-Tantawy, S.A.: A new integrable (3+1)-dimensional KdV-like model with its multiple-soliton solutions. Nonlinear Dyn. 83, 1529–1534 (2016)

    Article  MathSciNet  Google Scholar 

  19. Wazwaz, A.M., El-Tantawy, S.A.: A new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation. Nonlinear Dyn. 84, 1107–1112 (2016)

    Article  MathSciNet  Google Scholar 

  20. Wazwaz, A.M.: Two new integrable fourth-order nonlinear equations: multiple soliton solutions and multiple complex soliton solutions. Nonlinear Dyn. 94, 2655–2663 (2018)

    Article  Google Scholar 

  21. Ma, W.X.: Riemann–Hilbert problems of a six-component fourth-order AKNS system and its soliton solutions. Comput. Appl. Math. 37, 6359–6375 (2018)

    Article  MathSciNet  Google Scholar 

  22. Tian, S.F.: Initial-boundary value problems for the general coupled nonlinear Schrödinger equation on the interval via the Fokas method. J. Differ. Equ. 262, 506–558 (2017)

    Article  Google Scholar 

  23. Tian, S.F.: Initial-boundary value problems of the coupled modified Korteweg-de Vries equation on the half-line via the Fokas method. J. Phys. A: Math. Theor. 50, 395204 (2017)

    Article  MathSciNet  Google Scholar 

  24. Fokas, A.S., Lenells, J.: The unified method: I Nonlinearizable problems on the half-line. J. Phys. A Math. Theor. 45, 195201 (2012)

    Article  MathSciNet  Google Scholar 

  25. Wang, D.S., Wang, X.L.: Long-time asymptotics and the bright N-soliton solutions of the Kundu–Eckhaus equation via the Riemann–Hilbert approach. Nonlinear Anal. 41, 334–361 (2018)

    Article  MathSciNet  Google Scholar 

  26. Xu, J., Fan, E.G.: Long-time asymptotics for the Fokas–Lenells equation with decaying initial value problem: without solitons. J. Differ. Equ. 259, 1098–1148 (2015)

    Article  MathSciNet  Google Scholar 

  27. Lenells, J.: Initial-boundary value problems for integrable evolution equations with \(3\times 3\) Lax pairs. Phys. D Nonlinear Phenomena 241, 857–875 (2012)

    Article  MathSciNet  Google Scholar 

  28. Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Breather-to-soliton conversions described by the quintic equation of the nonlinear Schrödinger hierarchy. Phys. Rev. E 91, 032928 (2015)

    Article  MathSciNet  Google Scholar 

  29. Chowdury, A., Ankiewicz, A., Akhmediev, N.: Moving breathers and breather-to-soliton conversions for the Hirota equation. Proc. R. Soc. A 471, 20150130 (2015)

    Article  MathSciNet  Google Scholar 

  30. Lakshmanan, M., Porsezian, K., Daniel, M.: Effect of discreteness on the continuum limit of the Heisenberg spin chain. Phys. Lett. A 133, 483–488 (1988)

    Article  Google Scholar 

  31. Sun, W., Wang, L.: Vector rogue waves, rogue wave-to-soliton conversions and modulation instability of the higher-order matrix nonlinear Schrödinger equation. Eur. Phys. J. Plus 133, 12 (2018)

    Article  Google Scholar 

  32. Porsezian, K., Daniel, M., Lakshmanan, M.: On the integrability aspects of the one dimensional classical continuum isotropic biquadratic Heisenberg spin chain. J. Math. Phys. 33, 1807–1816 (1992)

    Article  MathSciNet  Google Scholar 

  33. Wang, L.H., Porsezian, K., He, J.S.: Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation. Phys. Rev. E 87, 053202 (2013)

    Article  Google Scholar 

  34. Prinari, B., Demontis, F., Li, S., Horikis, T.P.: Inverse scattering transform and soliton solutions for square matrix nonlinear Schrödinger equations with non-zero boundary conditions. Phys. D Nonlinear Phenomena 368, 22–49 (2018)

    Article  MathSciNet  Google Scholar 

  35. Nandy, S.: Inverse scattering approach to coupled higher-order nonlinear Schrödinger equation and N-soliton solutions. Nuclear Phys. B 679, 647–659 (2004)

    Article  MathSciNet  Google Scholar 

  36. Ma, W.X., Yong, X.L., Qin, Z.Y., Gu, X., Zhou, Y.: A generalized Liouville’s formula. preprint (2016)

  37. Li, Z.Q., Tian, S.F., Yang, J.J.: Riemann–Hilbert approach and soliton solutions for the higher-order dispersive nonlinear Schrödinger equation with nonzero boundary conditions. East Asian J. Appl. Math. 11, 369–388 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the reviewers for their encouraging suggestions that were helpful in improving this paper further.

Funding

This work is supported by the National Natural Science Foundation of China under Grant (Nos. 11971133, 12101159).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong Chen or Xue-Wei Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Yan, XW. Inverse scattering and soliton solutions of high-order matrix nonlinear Schrödinger equation. Nonlinear Dyn 108, 4057–4067 (2022). https://doi.org/10.1007/s11071-022-07363-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07363-0

Keywords

Mathematics Subject Classification

Navigation