Skip to main content
Log in

Distributed adaptive neural control for uncertain multi-agent systems with unknown actuator failures and unknown dead zones

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In actuality, the dead zones and failures often occur in actuators, but the existing algorithms have difficulty simultaneously tolerating dead zones and actuator failures in multi-agent systems. In this paper, the directed topology, uncertain dynamics, unknown dead zones and actuator failures are simultaneously taken into account for the multi-agent systems. By introducing distributed backstepping technique, the radial basis function neural networks and a bound estimation approach, the distributed fault-tolerant tracking controllers and relative adaptive laws for each follower are proposed, which guarantee all followers reach the synchronization and obtain the ideal tracking performance. Comparing with the existing results, it is a new attempt for strict-feedback multi-agent system to take unknown dead zones and unknown actuator failures into consideration. Moreover, the basis function vectors in RBF NNs are no longer required for controllers to decrease computational burden significantly. In the end, the efficiency of our proposed algorithm is verified by comparison simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Cai, J., Wen, C., Su, H., Liu, Z.: Robust adaptive failure compensation of hysteretic actuators for a class of uncertain nonlinear systems. IEEE Trans. Autom. Control 58(9), 2388–2394 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Chen, K., Wang, J., Zhang, Y., Liu, Z.: Second-order consensus of nonlinear multi-agent systems with restricted switching topology and time delay. Nonlinear Dyn. 78(2), 881–887 (2014)

    MathSciNet  MATH  Google Scholar 

  3. Chen, K., Wang, J., Zhang, Y., Liu, Z.: Consensus of second-order nonlinear multi-agent systems under state-controlled switching topology. Nonlinear Dyn. 81(4), 1871–1878 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Chen, M., Ge, S.S., Ren, B.: Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints. Automatica 47(3), 452–465 (2011)

    MathSciNet  MATH  Google Scholar 

  5. Chen, M., Shi, P., Lim, C.: Adaptive neural fault-tolerant control of a 3-dof model helicopter system. Syst. Man Cybern. 46(2), 260–270 (2016)

    Google Scholar 

  6. Chen, W., Ge, S.S., Wu, J., Gong, M.: Globally stable adaptive backstepping neural network control for uncertain strict-feedback systems with tracking accuracy known a priori. IEEE Trans. Neural Netw. 26(9), 1842–1854 (2015)

    MathSciNet  Google Scholar 

  7. Chen, Z., Li, Z., Chen, C.L.P.: Adaptive neural control of uncertain mimo nonlinear systems with state and input constraints. IEEE Trans. Neural Netw. 28(6), 1318–1330 (2017)

    Google Scholar 

  8. Dai, H., Chen, W., Xie, J., Jia, J.: Exponential synchronization for second-order nonlinear systems in complex dynamical networks with time-varying inner coupling via distributed event-triggered transmission strategy. Nonlinear Dyn. 92(3), 853–867 (2018)

    MATH  Google Scholar 

  9. Gutierrez, H., Morales, A., Nijmeijer, H.H.: Synchronization control for a swarm of unicycle robots: analysis of different controller topologies. Asian J. Control 19(5), 1822–1833 (2017)

    MathSciNet  MATH  Google Scholar 

  10. He, Y., Wang, J., Hao, R.: Adaptive robust dead-zone compensation control of electro-hydraulic servo systems with load disturbance rejection. J. Syst. Sci. Complex. 28(2), 341–359 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Hua, C., Zhang, L., Guan, X.: Distributed adaptive neural network output tracking of leader-following high-order stochastic nonlinear multiagent systems with unknown dead-zone input. IEEE Trans. Syst. Man Cybern. 47(1), 177–185 (2017)

    Google Scholar 

  12. Jin, Y.S.: Distributed consensus tracking for multiple uncertain nonlinear strict-feedback systems under a directed graph. IEEE Trans. Neural Netw. Learn. Syst. 24(4), 666–672 (2013). https://doi.org/10.1109/TNNLS.2013.2238554

    Article  Google Scholar 

  13. Li, Y., Tong, S., Liu, Y., Li, T.: Adaptive fuzzy robust output feedback control of nonlinear systems with unknown dead zones based on a small-gain approach. IEEE Trans. Fuzzy Syst. 22(1), 164–176 (2014)

    Google Scholar 

  14. Li, Y., Yang, G.: Adaptive fuzzy decentralized control for a class of large-scale nonlinear systems with actuator faults and unknown dead zones. Syst. Man Cybern. 47(5), 729–740 (2017)

    Google Scholar 

  15. Liu, Y., Tang, L., Tong, S., Chen, C.L.P.: Adaptive NN controller design for a class of nonlinear mimo discrete-time systems. IEEE Trans. Neural Netw. 26(5), 1007–1018 (2015)

    MathSciNet  Google Scholar 

  16. Liu, Y., Tong, S.: Adaptive fuzzy identification and control for a class of nonlinear pure-feedback mimo systems with unknown dead zones. IEEE Trans. Fuzzy Syst. 23(5), 1387–1398 (2015)

    Google Scholar 

  17. Liu, Z., Lai, G., Zhang, Y., Chen, X., Chen, C.L.P.: Adaptive neural control for a class of nonlinear time-varying delay systems with unknown hysteresis. IEEE Trans. Neural Netw. 25(12), 2129–2140 (2014)

    Google Scholar 

  18. Liu, Z., Su, L., Ji, Z.: Neural network observer-based leader-following consensus of heterogenous nonlinear uncertain systems. Int. J. Mach. Learn. Cybern. 9(9), 1435–1443 (2018)

    Google Scholar 

  19. Liu, Z., Wang, F., Zhang, Y., Chen, X., Chen, C.L.P.: Adaptive tracking control for a class of nonlinear systems with a fuzzy dead-zone input. IEEE Trans. Fuzzy Syst. 23(1), 193–204 (2015)

    Google Scholar 

  20. Lv, W., Wang, F.: Adaptive tracking control for a class of uncertain nonlinear systems with infinite number of actuator failures using neural networks. Adv. Differ. Equ. 2017(1), 374 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Lv, W., Wang, F., Li, Y.: Adaptive finite-time tracking control for nonlinear systems with unmodeled dynamics using neural networks. Adv. Differ. Equ. 2018(1), 159 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Lyu, Z., Liu, Z., Xie, K., Chen, C.L.P., Zhang, Y.: Adaptive fuzzy output-feedback control for switched nonlinear systems with stable and unstable unmodeled dynamics. IEEE Trans. Fuzzy Syst. pp. 1–1 (2019)

  23. Polycarpou, M.M., Ioannou, P.A.: A robust adaptive nonlinear control design. Automatica 32(3), 423–427 (1996)

    MathSciNet  MATH  Google Scholar 

  24. Su, H., Qiu, Y., Wang, L.: Semi-global output consensus of discrete-time multi-agent systems with input saturation and external disturbances. ISA Trans. 67, 131–139 (2017)

    Google Scholar 

  25. Su, X., Liu, Z., Lai, G., Chen, C.L.P., Chen, C.: Direct adaptive compensation for actuator failures and dead-zone constraints in tracking control of uncertain nonlinear systems. Inf. Sci. 417, 328–343 (2017)

    Google Scholar 

  26. Tian, B., Fan, W., Su, R., Zong, Q.: Real-time trajectory and attitude coordination control for reusable launch vehicle in reentry phase. IEEE Trans. Ind. Electron. 62(3), 1639–1650 (2015)

    Google Scholar 

  27. Tong, S., Li, Y.: Adaptive fuzzy output feedback control of mimo nonlinear systems with unknown dead-zone inputs. IEEE Trans. Fuzzy Syst. 21(1), 134–146 (2013)

    Google Scholar 

  28. Tong, S., Wang, T., Li, Y., Zhang, H.: Adaptive neural network output feedback control for stochastic nonlinear systems with unknown dead-zone and unmodeled dynamics. IEEE Trans. Syst. Man Cybern. 44(6), 910–921 (2014)

    Google Scholar 

  29. Wang, C., Wen, C., Guo, L.: Decentralized output-feedback adaptive control for a class of interconnected nonlinear systems with unknown actuator failures. Automatica 71(71), 187–196 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Wang, C., Wen, C., Lin, Y.: Decentralized adaptive backstepping control for a class of interconnected nonlinear systems with unknown actuator failures. J. Frankl. Inst. Eng. Appl. Math. 352(3), 835–850 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Wang, C., Wen, C., Lin, Y.: Adaptive actuator failure compensation for a class of nonlinear systems with unknown control direction. IEEE Trans. Autom. Control 62(1), 385–392 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Wang, F., Chen, B., Lin, C., Li, X.: Distributed adaptive neural control for stochastic nonlinear multiagent systems. IEEE Trans. Syst. Man Cybern. 47(7), 1795–1803 (2017)

    Google Scholar 

  33. Wang, F., Chen, B., Lin, C., Zhang, J., Meng, X.: Adaptive neural network finite-time output feedback control of quantized nonlinear systems. IEEE Trans. Syst. Man Cybern. 48(6), 1839–1848 (2018)

    Google Scholar 

  34. Wang, F., Liu, Z., Zhang, Y., Chen, B.: Distributed adaptive coordination control for uncertain nonlinear multi-agent systems with dead-zone input. J. Frankl. Inst. Eng. Appl. Math. 353(10), 2270–2289 (2016)

    MathSciNet  MATH  Google Scholar 

  35. Wang, F., Liu, Z., Zhang, Y., Chen, C.L.P.: Adaptive fuzzy visual tracking control for manipulator with quantized saturation input. Nonlinear Dyn. 89(2), 1241–1258 (2017)

    MATH  Google Scholar 

  36. Wang, F., Liu, Z., Zhang, Y., Chen, X., Chen, C.L.P.: Adaptive fuzzy dynamic surface control for a class of nonlinear systems with fuzzy dead zone and dynamic uncertainties. Nonlinear Dyn. 79(3), 1693–1709 (2015)

    MATH  Google Scholar 

  37. Wang, H., Chen, B., Lin, C.: Adaptive fuzzy control for pure-feedback stochastic nonlinear systems with unknown dead-zone input. Int. J. Syst. Sci. 45(12), 2552–2564 (2014)

    MathSciNet  MATH  Google Scholar 

  38. Wang, M., Wang, C., Shi, P., Liu, X.: Dynamic learning from neural control for strict-feedback systems with guaranteed predefined performance. IEEE Trans. Neural Netw. 27(12), 2564–2576 (2016)

    MathSciNet  Google Scholar 

  39. Wang, W., Huang, J., Wen, C., Fan, H.: Distributed adaptive control for consensus tracking with application to formation control of nonholonomic mobile robots. Automatica 50(4), 1254–1263 (2014)

    MathSciNet  MATH  Google Scholar 

  40. Wang, W., Wen, C.: Adaptive compensation for infinite number of actuator failures or faults. Automatica 47(10), 2197–2210 (2011)

    MathSciNet  MATH  Google Scholar 

  41. Wen, G., Chen, C.L.P., Feng, J., Zhou, N.: Optimized multi-agent formation control based on an identifier-actor-critic reinforcement learning algorithm. IEEE Trans. Fuzzy Syst. 26(5), 2719–2731 (2018)

    Google Scholar 

  42. Wen, G., Chen, C.L.P., Liu, Y.: Formation control with obstacle avoidance for a class of stochastic multiagent systems. IEEE Trans. Ind. Electron. 65(7), 5847–5855 (2018)

    Google Scholar 

  43. Xu, C., Zheng, Y., Su, H., Chen, M.Z.Q., Zhang, C.: Cluster consensus for second-order mobile multi-agent systems via distributed adaptive pinning control under directed topology. Nonlinear Dyn. 83(4), 1975–1985 (2016)

    MathSciNet  MATH  Google Scholar 

  44. Yan, H., Li, Y.: Adaptive nn prescribed performance control for nonlinear systems with output dead zone. Neural Comput. Appl. 28(1), 145–153 (2017)

    MathSciNet  Google Scholar 

  45. Yang, Y., Yue, D.: Distributed adaptive fault-tolerant control of pure-feedback nonlinear multi-agent systems with actuator failures. Neurocomputing 221, 72–84 (2017)

    Google Scholar 

  46. Yin, S., Shi, P., Yang, H.: Adaptive fuzzy control of strict-feedback nonlinear time-delay systems with unmodeled dynamics. IEEE Trans. Syste. Man Cybern. 46(8), 1926–1938 (2016)

    Google Scholar 

  47. Yoo, S.J.: Distributed adaptive containment control of uncertain nonlinear multi-agent systems in strict-feedback form. Automatica 49(7), 2145–2153 (2013)

    MathSciNet  MATH  Google Scholar 

  48. Yoo, S.J.: Distributed consensus tracking for multiple uncertain nonlinear strict-feedback systems under a directed graph. IEEE Trans. Neural Netw. 24(4), 666–672 (2013)

    Google Scholar 

  49. Zhang, T., Ge, S.S.: Adaptive neural network tracking control of mimo nonlinear systems with unknown dead zones and control directions. IEEE Trans. Neural Netw. 20(3), 483–497 (2009)

    Google Scholar 

  50. Zhang, Z., Chen, W.: Adaptive output feedback control of nonlinear systems with actuator failures. Inf. Sci. 179(24), 4249–4260 (2009)

    MathSciNet  MATH  Google Scholar 

  51. Zhang, Z., Xu, S., Guo, Y., Chu, Y.: Robust adaptive output-feedback control for a class of nonlinear systems with time-varying actuator faults. Int. J. Adapt. Control Signal Process. 24(9), 743–759 (2010)

    MathSciNet  MATH  Google Scholar 

  52. Zong, X., Li, T., Zhang, J.: Consensus conditions of continuous-time multi-agent systems with additive and multiplicative measurement noises. SIAM J. Control Optim. 56(1), 19–52 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This study was supported in part by the National Natural Science Foundation of China under Grant 61573108, in part by the Natural Science Foundation of Guangdong Province 2016A030313715, and in part by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Liu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proof of Theorem 1

Appendix: Proof of Theorem 1

The following overall Lyapunov function candidate function V is employed to analyze the stability in the total closed-loop system:

$$\begin{aligned} V = \sum _{i=1}^{N}V_{i,n_{i}}. \end{aligned}$$
(60)

Then, (56) is rewritten as

$$\begin{aligned}&{\dot{V}} \le -\sum _{i=1}^{N}\sum _{m=1}^{n_{i}}c_{i,m}z_{i,m}^{2} \nonumber \\&\quad +\sum _{i=1}^{N}\varphi _{i,n_i} +\sum _{i=1}^{N}\left( {\eta _{i} +{\bar{\lambda }}_{i}\varrho }\right) \mu _{i} \nonumber \\&\quad + \sum _{i=1}^{N}\dfrac{k_{i,0}}{2r_i}{\theta }_i^2. \end{aligned}$$
(61)

If the following compact set holds, \({\dot{V}} < 0\),

$$\begin{aligned} \varOmega= & {} \left\{ \sum _{i=1}^{N}\sum _{m=1}^{n_{i}}c_{i,m}{z_{i,m}^{2}}\right. \nonumber \\> & {} \left. \sum _{i=1}^{N}\varphi _{i,n_{i}} +\sum _{i=1}^{N}\left( {\eta _{i} +{\bar{\lambda }}_{i}\varrho }\right) \mu _{i}\right. \nonumber \\&\left. + \sum _{i=1}^{N}\dfrac{k_{i,0}}{2r_i}{\theta }_i^2\right\} , \end{aligned}$$
(62)

which implies that

$$\begin{aligned}&\lim _{t\rightarrow +\infty } \sum _{i=1}^{N}c_{i,1}{z_{i,1}^{2}}\le \sum _{i=1}^{N}\varphi _{i,n_{i}}\nonumber \\&+\sum _{i=1}^{N}\left( \eta _{i} +{\bar{\lambda }}_{i}\varrho \right) \mu _{i} \nonumber \\&+ \sum _{i=1}^{N}\dfrac{k_{i,0}}{2r_i}{\theta }_i^2. \end{aligned}$$
(63)

According to the similar results in [14], all the signals in the closed-loop system are bounded. Based on the work in [34], we have \(\left\| y-y_0\right\| \le \Vert z_{.1}\Vert /\left( {\underline{\sigma }}\right. \left. (L + B)\right) \), where \({\underline{\sigma }}(L + B)\) is the minimum singular value of \(L + B\), \(z_{.1} = [z_{1,1}, z_{2,1}, \ldots , z_{N,1}]^{\mathrm{T}}\). It can be shown that, for \(\forall {\bar{\varepsilon }} > 0 \),

$$\begin{aligned} \left\| y-y_0\right\| \le {\bar{\varepsilon }},~~if ~ {z_{. 1}^{2}} \le {\bar{\varepsilon }}^2 \left( {\underline{\sigma }}(L + B)\right) \end{aligned}$$
(64)

It is worth mentioning that the desired tracking error \(\left\| y-y_0\right\| \) can be controlled in a small neighborhood by tuning the parameters \(k_{i,0}\), \(r_i\), \(a_{i,m}\), \(c_{i,m}\)\((i=1, \ldots , N, ~ m=1, \ldots , n_i)\). In order to obtain the desired tracking error, the parameters \(k_{i,0}\), \(r_i\), \(a_{i,m}\), \(c_{i,1}\), \(\mu _{i}\), \({\bar{\varepsilon }}_{i,m}\) would be tuned in a appropriate set. According to Definition 1, the distributed consensus tracking error \(\left\| y-y_0\right\| \) in the closed-loop system is CSUUB.

The proof is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Liu, Z., Chen, C.L.P. et al. Distributed adaptive neural control for uncertain multi-agent systems with unknown actuator failures and unknown dead zones. Nonlinear Dyn 99, 1001–1017 (2020). https://doi.org/10.1007/s11071-019-05321-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-019-05321-x

Keywords

Navigation