Skip to main content
Log in

Nonlocal symmetries and molecule structures of the KdV hierarchy

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The nonlocal symmetries are important because they carry information about the existence of Darboux–Bäcklund and linearizing transformations, and they also allow us to construct nontrivial solutions to systems. In this paper, we focus on investigating three sets of nonlocal symmetries which are realized as appropriate local symmetries of related auxiliary systems for the Korteweg–de Vries hierarchy. Specifically, we construct infinitely many nonlocal symmetries from three different aspects using residues, Lax pairs and quadratic pseudopotentials for each member of the Korteweg–de Vries hierarchy and show how these nonlocal symmetries connect each other. These infinitely many nonlocal symmetries enable us to construct multiple soliton solutions. Moreover, we adapt the multiple soliton solutions derived from nonlocal symmetries and describe a procedure by using velocity resonance mechanism to find molecule solutions, which can be found not only in the optical systems, but also in fluid systems, for the combined third-fifth-order Korteweg–de Vries equation. Several types of molecule structures including soliton molecules, breather molecules and soliton–breather molecules are illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Anco, S.C., Bluman, G.: Nonlocal symmetries and nonlocal conservation laws of Maxwell’s equations. J. Math. Phys. 38, 3508–3532 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bluman, G.W., Kumei, S.: Symmetry-based algorithms to relate partial differential equations: I. Local symmetries. Eur. J. Appl. Math. 1, 189–216 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bluman, G.W., Kumei, S.: Symmetry-based algorithms to relate partial differential equations: II. Linearization by nonlocal symmetries. Eur. J. Appl. Math. 1, 217–223 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bruschi, M., Calogero, F.: The Lax representation for an integrable class of relativistic dynamical systems. Commun. Math. Phys. 109, 481–492 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cheng, X.P., Lou, S.Y., Yang, Y.Q., Li, P., Qi, S.: The N-soliton molecule for the combined (2N+1)th-order Lax’s KdV equation. Results Phys. 18, 103184 (2020)

    Article  Google Scholar 

  6. Clarkson, P.A., Joshi, N., Mazzocco, M.: The Lax pair for the MKdV hierarchy. Séminaires et Congrès 14, 53–64 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Crasovan, L.C., Kartashov, Y.V., Mihalache, D., Tornel, L., Kivshar, Y.S., Pérez-Garcia, V.M.: Soliton “molecules”: robust clusters of spatiotemporal optical solitons. Phys. Rev. E 67, 046610 (2003)

    Article  Google Scholar 

  8. Dong, M.J., Tian, S.F., Yan, X.W., Zhang, T.T.: Nonlocal symmetries, conservation laws and interaction solutions for the classical Boussinesq–Burgers equation. Nonlinear Dyn. 95, 273–291 (2019)

    Article  MATH  Google Scholar 

  9. Galas, F.: New nonlocal symmetries with pseudopotentials. J. Phys. A: Math. Theor. 25, L981–L986 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gao, X.N., Lou, S.Y., Tang, X.Y.: Bosonization, singularity analysis, nonlocal symmetry reductions and exact solutions of supersymmetric KdV equation. J. High Energy Phys. 05, 29 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Guthrie, G.A.: Recursion operators and nonlocal symmetries. Proc. R. Soc. Lond. A 446, 107–114 (1994)

    Article  MATH  Google Scholar 

  12. Hao, X.Z., Liu, Y.P., Tang, X.Y., Li, Z.B., Ma, W.X.: Nonlocal symmetries and the \(n\)th finite symmetry transformation for AKNS system. Mod. Phys. Lett. B 32, 1850332 (2008)

    Article  Google Scholar 

  13. Hao, X.Z., Liu, Y.P., Tang, X.Y., Li, Z.B.: Nonlocal symmetries and finite transformations of the fifth-order KdV equation. Z. Naturforsch. A 72, 441–448 (2017)

  14. Heredero, R.H., Reyes, E.G.: Geometric integrability of the Camassa–Holm equation. II. Int. Math. Res. Not. 3089–3125 (2012)

  15. Hirota, R.: Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27, 1192–1194 (1971)

    Article  MATH  Google Scholar 

  16. Hu, X.B., Lou, S.Y.: Nonlocal symmetries of nonlinear integrable models. Proc. Inst. Math. NAS Ukraine 30, 120–126 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Jia, M., Lin, J., Lou, S.Y.: Soliton and breather molecules in few-cycle-pulse optical model. Nonlinear Dyn. 100, 3745–3757 (2020)

    Article  Google Scholar 

  18. Kaur, L., Wazwaz, A.M.: Painlevé analysis and invariant solutions of generalized fifth-order nonlinear integrable equation. Nonlinear Dyn. 94, 2469–2477 (2018)

    Article  MATH  Google Scholar 

  19. Krasil’shchik, I.S., Vinogradov, A.M.: Nonlocal trends in the geometry of differential equations: symmetries, conservation laws, and Bäcklund transformations. Acta Appl. Math. 15, 161–209 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lan, Z.Z., Guo, B.L.: Nonlinear waves behaviors for a coupled generalized nonlinear Schrödinger–Boussinesq system in a homogeneous magnetized plasma. Nonlinear Dyn. 100, 3771–3784 (2020)

    Article  Google Scholar 

  21. Lax, P.D.: Integrals of nonlinear equations of evolution and solitary waves. Commun. Pure Appl. Math. XXI, 467–490 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  22. Leo, M., Leo, R.A., Soliani, G., Tempesta, P.: On the relation between Lie symmetries and prolongation structures of nonlinear field equations (2001)

  23. Li, Y.Q., Chen, J.C., Chen, Y., Lou, S.Y.: Darboux transformations via Lie point symmetries: KdV equation. Chin. Phys. Lett. 31, 010201 (2014)

    Article  Google Scholar 

  24. Liu, S.J., Tang, X.Y., Lou, S.Y.: Multiple Darboux–Bäcklund transformations via truncated Painlevé expansion and Lie point symmetry approach. Chin. Phys. B 27(6), 060201 (2018)

    Article  Google Scholar 

  25. Lou, S.Y.: Painlevé test for the integrable dispersive long wave equations in two space dimensions. Phys. Lett. A 176, 96–100 (1993)

    Article  MathSciNet  Google Scholar 

  26. Lou, S.Y.: Negative Kadomtsev–Petviashvili hierarchy. Phys. Scripta 57, 481–485 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lou, S.Y.: A \((1+1)\)-dimensional integrable system with fifth order spectral problems and four dispersion relations. Phys. Lett. A 384, 126761 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lou, S.Y.: A novel \((2+1)\)-dimensional integrable KdV equation with peculiar solution structures. Chin. Phys. B 29(8), 080502 (2020)

    Article  Google Scholar 

  29. Lou, S.Y.: Full reversal symmetric multiple soliton solutions for integrable systems. Acta Phys. Sin.-Ch Ed 69, 010503 (2020)

    Article  Google Scholar 

  30. Lou, S.Y.: Soliton molecules and asymmetric solitons in three fifth order systems via velocity resonance. J. Phys. Commun. 4, 041002 (2020)

    Article  Google Scholar 

  31. Lou, S.Y., Hu, X.B.: Nonlocal Lie-Bäcklund symmetries and Olver symmetries of the KdV equation. Chin. Phys. Lett. 10, 577–580 (1993)

    Article  Google Scholar 

  32. Lou, S.Y., Hu, X.B.: Infinitely many Lax pairs and symmetry constraints of the KP equation. J. Math. Phys. 38, 6401–6427 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ma, W.X.: Conservation Laws by symmetries and adjoint symmetries. Discrete Contin. Dyn. Syst. 11, 707–721 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Nijhoff, F., Hone, A., Joshi, N.: On a Schwarzian PDE associated with the KdV hierarchy. Phys. Lett. A 267, 147–156 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. Reyes, E.G.: Nonlocal symmetries and the Kaup–Kupershmidt equation. J. Math. Phys. 46, 073507 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tychynin, V.A.: Nonlocal symmetry and generating solutions for Harry-Dym-type equations. J. Phys. A Math. Gen. 27, 4549–4556 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. Vakhnenko, V.O., Parkes, E.J.: The calculation of multi-soluton solutions of the Vakhnenko equation by the inverse scattering method. Chaos Solitons Fract. 13, 1819–1826 (2002)

    Article  MATH  Google Scholar 

  38. Vinogradov, A.M., Krasil’shchik, I.S.: A method for computing higher symmetries of nonlinear evolutionary equations and nonlocal symmetries. Dokl. Akad. Nauk SSSR 22, 235–239 (1980)

    MATH  Google Scholar 

  39. Wang, X., Wei, J.: Antidark solitons and soliton molecules in a \((3+1)\)-dimensional nonlinear evolution equation. Nonlinear Dyn. 102, 363–377 (2020)

    Article  Google Scholar 

  40. Wazwaz, A.M.: Two forms of \((3+1)\)-dimensional B-type Kadomtsev–Petviashvili equation: multiple soliton solutions. Physica Scripta 86, 035007 (2012)

    Article  MATH  Google Scholar 

  41. Wazwaz, A.M.: Multiple-soliton solutions for extended \((3+1)\)-dimensional Jimbo-Miwa equations. Appl. Math. Lett. 64, 21–26 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wazwaz, A.M., El-Tantawy, S.A.: New \((3+1)\)-dimensional equations of Burgers type and Sharma–Tasso–Olver type: multiple-soliton solutions. Nonlinear Dyn. 87, 2457–2461 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  43. Weiss, J.: On class of integrable systems and the Painlevé property. J. Math. Phys. 25, 13–24 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  44. Weiss, J.: Bäcklund transformation and the Painlevé property. J. Math. Phys. 27, 1293–1305 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  45. Weiss, J., Tabor, M., Carnevale, G.: The Painlevé property for partial differential equations. J. Math. Phys. 24, 522–526 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  46. Yan, Z.W., Lou, S.Y.: Special types of solitons and breather molecules for a \((2+1)\)-dimensional fifth-order KdV equation. Commun. Nonlinear Sci. Numer. Simul. 91, 105425 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  47. Zhang, R.F., Bilige, S.D.: Bilinear neural network method to obtain the exact analytical solutions of nonlinear partial differential equations and its application to p-gBKP equatuon. Nonlinear Dyn. 95, 3041–3048 (2019)

    Article  MATH  Google Scholar 

  48. Zhang, R.F., Bilige, S.D., Liu, J.G., Li, M.C.: Bright-dark solitons and interaction phenomenon for p-gBKP equation by using bilinear neural network method. Phys. Scr. 96, 025224 (2020)

    Article  Google Scholar 

  49. Zhang, R.F., Bilige, S.D., Temuer, C.: Fractal Solitons, arbitrary function solutions, exact periodic wave and breathers for a nonlinear partial differential equation by using bilinear neural network method. J. Syst. Sci. Complex. 34, 122–139 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  50. Zhang, R.F., Li, M.C., Yin, H.M.: Rogue wave solutions and the bright and dark solitons of the \((3+1)\)-dimensional Jimbo-Miwa equation. Nonlinear Dyn. 103, 1071–1079 (2021)

    Article  Google Scholar 

  51. Zhang, Z., Yang, X.Y., Li, B.: Novel soliton molecules and breather-positon on zero background for the complex modified KdV equation. Nonlinear Dyn. 100, 1551–1557 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the Natural Science Foundation of Zhejiang Province No. LQ20A010009, the General Scientific Research of Zhejiang Province No. Y201941009, the Natural Science Foundation of Shanghai No. 19ZR1414000 and the National Natural Science Foundation of China No. 11675055. The author wishes to thank Professor S. Y. Lou for his valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiazhi Hao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability statements

All data generated or analyzed during this study are included in this published article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

Proposition 1

The Lax pair for the nth equation of the KdV hierarchy is

$$\begin{aligned}&\psi _{xx}-(\lambda -u)\psi =0,\\&\psi _{t_{n+1}}=\frac{T_x(u,\lambda )}{2}\psi -T(u,\lambda )\psi _x \end{aligned}$$

with

$$\begin{aligned} T(u,\lambda )=-2\sum _{k=0}^{n}((4\lambda )^{n-k}L_k[u]). \end{aligned}$$

Proposition 2

The nth equation of the KdV hierarchy admits \(\phi \) determined by the compatible equations

$$\begin{aligned}&\phi _{x}=\psi ^2, \end{aligned}$$
(50)
$$\begin{aligned}&\phi _{t_{n+1}}=Q(u,\lambda )\psi ^2+R(u,\lambda )\psi _x^2-R_x(u,\lambda )\psi \psi _x \end{aligned}$$
(51)

with

$$\begin{aligned}&R(u,\lambda )=-8\sum _{k=0}^{n-1}((n-k)(4\lambda )^{n-k-1}L_{k}[u]),\\&Q(u,\lambda )=\left( \frac{\partial _{xx}}{2}+u-\lambda \right) R(u,\lambda )-T(u,\lambda ). \end{aligned}$$

Proof

The compatibility condition of Eqs. (50) and (51) implies

$$\begin{aligned}&(T_x(u,\lambda )-Q_x(u,\lambda )-(u-\lambda )R_x(u,\lambda ))\psi ^2\\&\quad +(R_{xx}(u,\lambda )+2(u-\lambda )R(u,\lambda )\\&\quad -2T(u,\lambda )-2Q(u,\lambda ))\psi \psi _x=0. \end{aligned}$$

Setting coefficients of \(\psi ^2\) and \(\psi \psi _x\) to zero, we get

$$\begin{aligned}&\psi \psi _x: Q(u,\lambda )=\frac{R_{xx}(u,\lambda )}{2}\nonumber \\&\quad +(u-\lambda )R(u,\lambda )-T(u,\lambda ),\end{aligned}$$
(52)
$$\begin{aligned}&\psi ^2: (\partial _{xxx}+2u_x+4(u-\lambda )\partial _x)R(u,\lambda )\nonumber \\&\quad =4T_x(u,\lambda ). \end{aligned}$$
(53)

Substituting

$$\begin{aligned}&Q(u,\lambda )=\sum _{i=0}^{n}q_i[u]\lambda ^i,\quad R(u,\lambda )=\sum _{i=0}^{n}r_i[u]\lambda ^i,\\&T(u,\lambda )=-2\sum _{k=0}^{n}((4\lambda )^{n-k}L_k[u]) \end{aligned}$$

into Eqs. (52) and (53), one can show by straightforward computations that

$$\begin{aligned}&R(u,\lambda )=-8\sum _{k=0}^{n-1}((n-k)(4\lambda )^{n-k-1}L_{k}[u]),\\&Q(u,\lambda )=\left( \frac{\partial _{xx}}{2}+u-\lambda \right) R(u,\lambda )-T(u,\lambda ). \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, X. Nonlocal symmetries and molecule structures of the KdV hierarchy. Nonlinear Dyn 104, 4277–4291 (2021). https://doi.org/10.1007/s11071-021-06530-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06530-z

Keywords

Mathematics Subject Classification

Navigation