Skip to main content
Log in

An approximate technique to test chaotic region in a rotating pendulum system with bistable characteristics

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper is concerned with the chaotic dynamics of a rotating pendulum system with bistable characteristics subjected to a viscous damping and a harmonic forcing. As a prototype of the single-degree-of-freedom system with bistable characteristics, this pendulum system exhibits a transition from smooth to discontinuous dynamics by changing a geometrical parameter. The dynamic behaviors of the unperturbed system with irrational nonlinearity bear significant similarities to the coupling of a simple pendulum and the smooth and discontinuous (SD) oscillator with the coexistence of the standard homoclinic orbits of Duffing type and pendulum type and the coexistence of the nonstandard homoclinic orbits of SD type and pendulum type in the smooth and discontinuous case, respectively. For the perturbed smooth system, we present an approximate technique to analytically obtain the lower bound line for horseshoes chaos arising from the homoclinic orbits of Duffing-type and Pendulum-type tangling, which overcomes the natural difficulties of solving the analytical expression of the homoclinic orbits and calculating the complicated Melnikov integrals. The chaotic thresholds of the perturbed discontinuous system are calculated by applying the numerical technique due to its non-smooth feature. Numerical simulations are carried out to certify the chaotic thresholds, which show the efficiency of the proposed techniques and demonstrate the predicated chaotic motions. Finally, different types of chaotic motions are illustrated via the cylindrical phase portraits. The contribution of this study is also helpful for exploring the dynamical behaviors of the complex nonlinear dynamical system containing the standard homoclinic or heteroclinic orbit in terms of the quantitative calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Parks, H.V., Faller, J.E.: Simple pendulum determination of the gravitational constant. Phys. Rev. Lett. 105, 110801 (2010)

    Article  Google Scholar 

  2. Albert Luo, C.J.: Resonance and Bifurcation to Chaos in Pendulum. Higher Education Press, Beijing (2017)

    MATH  Google Scholar 

  3. D’Humieres, D., Beasley, M.R., Huberman, B.A., Libchaber, A.: Chaotic states and routes to chaos in the forced pendulum. Phys. Rev. A 26(6), 3483–3496 (1982)

    Article  Google Scholar 

  4. Zayas, V.A., Low, S.S., Mahin, S.A.: A simple pendulum technique for achieving seismic isolation. Earthq. Spectra 6, 317–333 (1990)

    Article  Google Scholar 

  5. Kim, Y., Kim, S.H., Kwak, Y.K.: Dynamic analysis of a non-holonomic two-wheeled inverted pendulum robot. J. Intell. Robot. Syst. 44, 25–46 (2005)

    Article  Google Scholar 

  6. Whitaker, R.: Types of two-dimensional pendulums and their uses in education. Sci. Educat. 13, 401–415 (2004)

    Article  Google Scholar 

  7. Farrugia, A.: The regulatory pendulum in transfusion medicine. Transf. Med. Rev. 16, 273–282 (2002)

    Article  Google Scholar 

  8. Awrejcewicz, J., Kudra, G.: Modeling, numerical analysis and application of triple physical pendulum with rigid limiters of motion. Arch. Appl. Mech. 74, 746–753 (2005)

    Article  MATH  Google Scholar 

  9. Awrejcewicz, J., Sendkowski, D., Kazmierczak, M.: Geometrical approach to the swinging pendulum dynamics. Comput. Struct. 84, 1577–1583 (2006)

    Article  Google Scholar 

  10. Xu, X., Wiercigroch, M.: Approximate analytical solutions for oscillatory and rotational motion of a parametric pendulum. Nonlinear Dyn. 47, 311–420 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Das, S., Wahi, P.: Initiation and directional control of period-1 rotation for a parametric pendulum. Proc. R. Soc. A 472, 20160719 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, H., Ma, T.: Iterative harmonic balance for period-one rotating solution of parametric pendulum. Nonlinear Dyn. 70, 2433–2444 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Awrejcewicz, J., Kudra, G., Wasilewski, G.: Chaotic zones in triple pendulum dynamics observed experimentally and numerically. Appl. Mech. Mater. 9, 1–17 (2008)

    Article  Google Scholar 

  14. Kazmierczak, M., Kudra, G., Awrejcewicz, J., et al.: Mathematical modelling, numerical simulations and experimental verification of bifurcation dynamics of a pendulum driven by a dc motor. Eur. J. Phys. 36(5), 13 (2015)

    Article  Google Scholar 

  15. Ji, J.C., Chen, Y.S.: Bifurcation in a parametrically excited two-degree-of-freedom nonlinear oscillating system with 1:2 internal resonance. Appl. Math. Mech. 20, 350–359 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Krasilnikov, P., Gurina, T., Svetlova, V.: Bifurcation study of a chaotic model variable-length pendulum on a vibrating base. Int. J. Non-Linear Mech. 105, 88–98 (2018)

    Article  Google Scholar 

  17. Albert Luo, C.J., Min, F.H.: The chaotic synchronization of a controlled pendulum with a periodically forced, damped Duffing oscillator. Commun. Nonlinear Sci. Numer. Simulat. 16, 4704–4717 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leven, R.W., Koch, B.P.: Chaotic behaviour of a parametrically excited damped pendulum. Phys. Lett. A 86, 71–74 (1981)

    Article  Google Scholar 

  19. Stachowiak, T., Okada, T.: A numerical analysis of chaos in the double pendulum. Chaos Solitons Fract. 29, 417–422 (2006)

    Article  MATH  Google Scholar 

  20. Kapitaniak, M., Czolczynski, K., Perlikowski, P., Kapitaniak, T.: Synchronization of clocks. Phys. Rep. 517, 1–69 (2012)

    Article  MATH  Google Scholar 

  21. Najdecka, A., Kapitaniak, T., Wiercigroch, M.: Synchronous rotational motion of parametric pendulums. Int. J. Non-Linear Mech. 70, 84–94 (2015)

    Article  Google Scholar 

  22. Yang, C.C.: Synchronizations of rotating pendulums via self-learning terminal sliding-mode control subject to input nonlinearity. Nonlinear Dyn. 72(3), 695–705 (2013)

    Article  MathSciNet  Google Scholar 

  23. Wojna, M., Wijata, A., Wasilewski, G., Awrejcewicz, J.: Numerical and experimental study of a double physical pendulum with magnetic interaction. J. Sound Vib. 430, 214–230 (2018)

    Article  Google Scholar 

  24. Nana, B., Yamgoué, S.B., Tchitnga, R., Woafo, P.: Dynamics of a pendulum driven by a DC motor and magnetically controlled. Chaos Solitons Fract. 104, 18–27 (2017)

    Article  Google Scholar 

  25. Awrejcewicz, J., Kudra, G., Wasilewski, G.: Experimental and numerical investigation of chaotic regions in the triple physical pendulum. Nonlinear Dyn. 50(4), 755–766 (2007)

    Article  MATH  Google Scholar 

  26. Olejnik, P., Awrejcewicz, J.: Coupled oscillators in identification of nonlinear damping of a real parametric pendulum. Mech. Syst. Signal Process. 98, 91–107 (2018)

    Article  Google Scholar 

  27. Anh, N.D., Matsuhisa, H., Viet, L.D., Yasuda, M.: Vibration control of an inverted pendulum type structure by passive mass–spring–pendulum dynamic vibration absorber. J. Sound Vib. 307(1–2), 187–201 (2007)

    Article  Google Scholar 

  28. Wu, S.T., Siao, P.S.: Auto-tuning of a two-degree-of-freedom rotational pendulum absorber. J. Sound Vib. 331, 3020–3034 (2012)

    Article  Google Scholar 

  29. Mahmoudkhani, S.: Improving the performance of auto-parametric pendulum absorbers by means of a flexural beam. J. Sound Vib. 425, 102–123 (2018)

    Article  Google Scholar 

  30. Han, N., Cao, Q.J.: Global bifurcations of a rotating pendulum with irrational nonlinearity. Commun. Nonlinear Sci. Numer. Simulat. 36, 431–445 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ueda, Y.: Randomly transitional phenomena in the system governed by Duffing’s equation. J. Stat. Phys. 20, 181–196 (1979)

    Article  MathSciNet  Google Scholar 

  32. Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  33. Gleick, J., Hilborn, R.C.: Chaos, making a new science. Phys. Today 56, 79 (1998)

    Google Scholar 

  34. Yorke, L.J.A.: Period three implies chaos. Am. Math. Mon. 82(10), 985–992 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  35. Melnikov, V.K.: On the stability of the center for time-periodic perturbations. Trans. Moscow. Math. 12, 1–57 (1963)

    MathSciNet  Google Scholar 

  36. Awrejcewicz, J., Holicke, M.M.: Smooth and nonsmooth high dimensional chaos and the Melnikov-type methods. World Scientific, Singapore (2007)

    Book  MATH  Google Scholar 

  37. Battelli, F., Palmer, K.J.: Chaos in the duffing equation. J. Differ. Equ. 101, 276–301 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  38. Hou, L., Su, X.C., Chen, Y.S.: Bifurcation modes of periodic solution in a Duffing system under constant force as well as harmonic excitation. Int. J. Bifurcat. Chaos 29(13), 1950173 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York (1983)

    Book  MATH  Google Scholar 

  40. Kwekt, K.H., Li, J.B.: Chaotic dynamics and subharmonic bifurcations in a non-linear system. Int. J. Non-Linear Mech. 31(3), 277–295 (1996)

    Article  MathSciNet  Google Scholar 

  41. Awrejcewicz, J., Holicke, M.: Analytical prediction of stick-slip chaos in a double self-excited Duffing-type oscillator. Math. Probl. Eng. 834(6), 369–376 (2006)

    MathSciNet  MATH  Google Scholar 

  42. Cao, Q.J., Wiercigroch, M., Pavlovskaia, E.E., Grebogi, C., Thompson, J.M.T.: Piecewise linear approach to an archetypal oscillator for smooth and discontinuous dynamics. Philos. Trans. R. Soc. A 366, 635–652 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Cao, Q.J., Wiercigroch, M., Pavlovskaia, E.E., Grebogi, C., Thompson, J.M.T.: Archetypal oscillator for smooth and discontinuous dynamics. Phys. Rev. E 74, 046218 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Zhang, W., Yao, M.H., Zhang, J.H.: Using the extended Melnikov method to study the multi-pulse global bifurcations and chaos of a cantilever beam. J. Sound Vib. 319(1–2), 541–569 (2009)

    Article  Google Scholar 

  45. Han, Y.W., Cao, Q.J., Chen, Y.S., Wiercigroch, M.: A novel smooth and discontinuous oscillator with strong irrational nonlinearities. Sci. China-Phys. Mech. Astron. 55, 1832–1843 (2012)

    Article  Google Scholar 

  46. Feng, J.J., Zhang, Q.C., Wang, W.: Chaos of several typical asymmetric systems. Chaos Solitons Fract. 45, 950–958 (2012)

    Article  MATH  Google Scholar 

  47. Tian, R.L., Wu, Q.L., Xiong, Y.P., Yang, X.W.: Bifurcations and chaotic thresholds for the spring-pendulum oscillator with irrational and fractional nonlinear restoring forces. Eur. Phys. J. Plus 129, 85–223 (2014)

    Article  Google Scholar 

  48. Zhang, X., Zhou, L.Q.: Melnikov’s method for chaos of the nanoplate postulating nonlinear foundation. Appl. Math. Model. 61, 744–749 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ren, H.P., Zhou, Z.X., Grebogi, C.: Nonlinear dynamics in the flexible shaft rotating-lifting system of silicon crystal puller using Czochralski method. Nonlinear Dyn. 1–14, 771 (2020)

    Article  Google Scholar 

  50. Nusse, H.E., Yorke, A.Y.: Dynamics Numerical Explorations. Springer, New York (1997)

    MATH  Google Scholar 

  51. Tian, R.L., Yang, X.W., Cao, Q.J., Wu, Q.L.: Bifurcations and chaotic threshold for a nonlinear system with an irrational restoring force. Chin. Phys. B 2, 136–147 (2012)

    Google Scholar 

  52. Hou, L., Chen, Y.S., Fu, Y.Q., Chen, H.Z., Lu, Z.S.: Application of the HB–AFT method to the primary resonance analysis of a dual-rotor system. Nonlinear Dyn. 88(4), 2531–2551 (2017)

    Article  Google Scholar 

  53. Zhao, X., Chen, B., Li, Y.: Forced vibration analysis of Timoshenko double-beam system under compressive axial load by means of Green’s functions. J. Sound Vib. 464, 115001 (2020)

    Article  Google Scholar 

  54. Hao, Z.F., Cao, Q.J.: The isolation characteristics of an archetypal dynamical model with stable-quasi-zero-stiffness. J. Sound Vib. 340, 61–79 (2015)

    Article  Google Scholar 

  55. Sun, X.T., Wang, F., Xu, J.: Dynamics and realization of a feedback-controlled nonlinear isolator with variable time delay. J. Vib. Acoust. 141(2), 021005 (2018)

    Article  Google Scholar 

  56. Wiercigroch, M., Najdecka, A., Vaziri, V.: Nonlinear Dynamics of Pendulums System for Energy Harvesting. In: Vibration Problems ICOVP. Springer, Netherlands (2011)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11702078, 11771115); the Natural Science Foundation of Hebei Province (Grant Nos. A2018201227, A2019402043); and the High-Level Talent Introduction Project of Hebei University (801260201111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Han.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

When \(f_{0}=0\) and \(\omega =0\), the damping pendulum system can be written as

$$\begin{aligned} \left\{ \begin{array}{l} {\dot{x}}=y,\\ {\dot{y}}=-\xi y-\sin {x}- q\lambda \sin {x}\left( 1-\displaystyle \frac{1}{\sqrt{1+\lambda ^{2}-2\lambda \cos {x}}}\right) . \end{array}\right. \end{aligned}$$

This study focuses on the rotating pendulum system with bistable characteristics which means that there exist five equilibria \(({x_{i},y_{i}})_{i=1,2,3,4,5}\) in the damping pendulum system satisfying \(|\rho |<1\) or

$$\begin{aligned} \left\{ (\lambda ,q)~\bigg |~q > \displaystyle \frac{\lambda -1}{\lambda \left( 2-\lambda \right) }, ~\lambda \in (1,2), ~q\in (0,+\infty ) \right\} . \end{aligned}$$

Then, the Jacobian matrix at equilibria \(({x_{i},y_{i}})_{i=1,2,3,4,5}\) can be expressed as

$$\begin{aligned} J_{({x_{i},y_{i}})}=\left[ \begin{array}{ll} 0&{} \quad 1\\ K(x) &{} \quad -\xi \\ \end{array} \right] , \end{aligned}$$

and

$$\begin{aligned} K(x)= & {} -(1+q\lambda )\cos {x}+\displaystyle \frac{q\lambda \cos {x}}{\sqrt{1+\lambda ^{2}-2\lambda \cos {x}}}\\&- q\lambda ^{2}\sin ^{2}{x}\left( {{1+\lambda ^{2}-2\lambda \cos {x}}}\right) ^{-1.5}, \end{aligned}$$

which leads to the characteristic equation

$$\begin{aligned} \varLambda ^{2}+\xi \varLambda -K(x_{i})=0. \end{aligned}$$

Two eigenvalues \(\varLambda _{1,2}\) can be derived by calculating the characteristic equation and written as

$$\begin{aligned} \varLambda _{1,2}=\displaystyle \frac{-\xi \pm \sqrt{\xi ^{2}+4K(x_{i})}}{2}, \end{aligned}$$

where

$$\begin{aligned} \Delta= & {} \xi ^{2}+4K(x_{i}),~~K(x_{1})\\= & {} q\displaystyle \frac{\lambda (2-\lambda )}{\lambda -1}-1>0,\\ K(x_{2,3})= & {} 1+\displaystyle \frac{q\lambda ^{2}}{1+\lambda }>0,~K(x_{4,5})\\= & {} -\displaystyle \frac{\left( 1-\rho ^2\right) \left( 1+q\lambda \right) ^3}{q^{2}\lambda }<0. \end{aligned}$$

Then, we will explore the effect of nonnegative damping \(\xi \) on the equilibria \(({x_{i},y_{i}})_{i=1,2,3,4,5}\) based upon two eigenvalues. The detailed analysis is listed in the following.

(a) When \(\xi >0\) and \(\xi =0\), for the equilibria \((x_{1},y_{1})\), \((x_{2},y_{2})\) and \((x_{3},y_{3})\), there exist two unequal real roots

$$\begin{aligned} \varLambda _{1,2}=\displaystyle \frac{-\xi \pm \sqrt{\xi ^{2}+4K(x_{1,2,3})}}{2},~~\varLambda _{1,2}=\pm \sqrt{K(x_{1,2,3})}. \end{aligned}$$

due to \(\Delta >0\) and \(K(x_{1,2,3})>0\). It is concluded that the equilibria \((x_{1},y_{1})\), \((x_{2},y_{2})\) and \((x_{3},y_{3})\) are saddle points.

(b) No damping: When \(\xi =0\), for the equilibria \((x_{4},y_{4})\) and \((x_{5},y_{5})\), there exists a pair of conjugate pure virtual roots

$$\begin{aligned} \varLambda _{1,2}=\pm \sqrt{-K(x_{4,5})}~i. \end{aligned}$$

due to \(\Delta <0\) and \(K(x_{4,5})<0\). It is concluded that \((x_{4},y_{4})\) and \((x_{5},y_{5})\) are centers.

(c) Weak damping: When \(\xi ^{2}+4K(x_{4,5})<0\), for the equilibria \((x_{4},y_{4})\) and \((x_{5},y_{5})\), there exists a pair of conjugate virtual roots

$$\begin{aligned} \varLambda _{1,2}=\displaystyle \frac{-\xi \pm \sqrt{-\xi ^{2}-4K(x_{1,2,3})}~i}{2} \end{aligned}$$

due to \(\Delta <0\) and \(K(x_{4,5})<0\). Since the real part of the eigenvalues are less than zero, we conclude that \((x_{4},y_{4})\) and \((x_{5},y_{5})\) are stable focus points.

(d) Strong damping: When \(\xi ^{2}+4K(x_{4,5})>0\), for the equilibria \((x_{4},y_{4})\) and \((x_{5},y_{5})\), there exist two unequal real roots

$$\begin{aligned} \varLambda _{1,2}=\displaystyle \frac{-\xi \pm \sqrt{\xi ^{2}+4K(x_{1,2,3})}}{2} \end{aligned}$$

due to \(\Delta >0\) and \(K(x_{4,5})<0\). Since two eigenvalues are less than zero, we conclude that \((x_{4},y_{4})\) and \((x_{5},y_{5})\) are stable node points.

(e) Critical damping: When \(\xi ^{2}+4K(x_{4,5})=0\), for the equilibria \((x_{4},y_{4})\) and \((x_{5},y_{5})\), there exist two equal real roots

$$\begin{aligned} \varLambda _{1,2}=-\displaystyle \frac{\xi }{2} \end{aligned}$$

due to \(\Delta =0\) and \(K(x_{4,5})<0\). It is concluded that \((x_{4},y_{4})\) and \((x_{5},y_{5})\) are stable degenerate nodes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, N., Lu, P. & Li, Z. An approximate technique to test chaotic region in a rotating pendulum system with bistable characteristics. Nonlinear Dyn 104, 191–214 (2021). https://doi.org/10.1007/s11071-021-06274-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-021-06274-w

Keywords

Navigation