Skip to main content
Log in

Nonlinear localized waves resonance and interaction solutions of the (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper deals with localized waves in the (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation in the incompressible fluid. Based on Hirota’s bilinear method, N-soliton solutions related to Boiti–Leon–Manna–Pempinelli equation are constructed. Novel nonlinear wave phenomena are obtained by selecting appropriate parameters to N-soliton solutions, and time evolutions of different kinds of solitary waves are investigated in detail. Rich elastic interactions are illustrated analytically and graphically. More specifically, the inelastic interactions, i.e., fusion and fission of solitary waves, are constructed by choosing special parameters on kink solitons and breathers. The analysis of the influence of parameters on propagation is revealed in three tables. The results have potential applications in fluid mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Fu, Z.T., Liu, S.K., Liu, S.D., Zhao, Q.: New Jacobi elliptic fuctions expansion and new periodic solutions of nonlinear wave equaitions. Phys. Lett. A 290(1–2), 72–76 (2001)

    MathSciNet  Google Scholar 

  2. Wazwaz, A.M., Kaur, L.: New integrable Boussinesq equations of distinct dimensions with diverse variety of soliton solutions. Nonlinear Dyn. 97, 83–94 (2019)

    MATH  Google Scholar 

  3. Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux Transformation in Soliton Theory and Its Geometric Applications. Scientific and Technical Press, Shanghai (1999)

    Google Scholar 

  4. Zhao, Q.L., Li, X.Y., Liu, F.S.: Two integrable lattice hierarchies and their respective Darboux transformations. Appl. Math. Comput. 219(10), 5693–5705 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Wen, X.Y., Wang, D.S.: Modulational instability and higher order-rogue wave solutions for the generalized discrete Hirota equation. Wave Motion 79, 84–97 (2018)

    MathSciNet  Google Scholar 

  6. Liu, L., Wen, X.Y., Liu, N., Jiang, T., Yuan, J.Y.: An integrable lattice hierarchy associated with a \(4\times 4\) matrix spectral problem: N-fold Darboux transformation and dynamical properties. Appl. Math. Comput. (2019). https://doi.org/10.1016/j.amc.2019.06.039

    Article  Google Scholar 

  7. Xu, X.X., Sun, Y.P.: An integrable coupling hierarchy of Dirac integrable hierarchy, its Liouville integrability and Darboux transformation. J. Nonlinear Sci. Appl. 10, 3328–3343 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Ablowitz, M.J., Segur, H.: Solitons and the Inverse Scattering Transformation. SIAM, Philadelphia (1981)

    MATH  Google Scholar 

  9. Hirota, R.: Direct Methods in Soliton Theory. Springer, Berlin (2004)

    MATH  Google Scholar 

  10. Ren, B., Lin, J., Lou, Z.M.: A new nonlinear equation with lump-soliton, lump-periodic, and lump-periodic-soliton solutions. Complexity Article ID 4072754, 10 (2019)

  11. Ma, W.X.: A search for lump solutions to a combined fourth-order nonlinear PDE in (2 + 1)-dimensions. J. Appl. Anal. Comput. 9(4), 1319–1332 (2019)

    MathSciNet  Google Scholar 

  12. Ma, W.X.: Abundant lumps and their interaction solutions of (3 + 1)-dimensional linear PDEs. J. Geom. Phys. 133, 10–16 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Rizvi, S.R., Afzal, I., Ali, K., Younis, M.: Stationary solutions for nonlinear Schr\(\rm {\ddot{o}}\)dinger equations by Lie group analysis. Acta Phys. Pol. A 136(1), 187–189 (2019)

    Google Scholar 

  14. Rizvi, S.T.R., Ali, K., Ahmad, M.: Optical solitons for Biswas–Milovic equation by new extended auxiliary equation method. Optik 204, 164181 (2020)

    Google Scholar 

  15. Kocak, H., Pinar, Z.: On solutions of the fifth-order dispersive equations with porous medium type non-linearity. Wave Random Complex. 28(3), 516–522 (2018)

    MathSciNet  Google Scholar 

  16. Pinar, Z., Kocak, H.: Exact solutions for the third-order dispersive-Fisher equations. Nonlinear Dyn. 91(1), 421–426 (2018)

    MathSciNet  Google Scholar 

  17. Pinar, Z.: Analytical studies on waves in nonlinear transmission line media. Int. J. Optim. Control Theor. Appl. 9(2), 100–104 (2019)

    MathSciNet  Google Scholar 

  18. Rizvi, S.T.R., Ali, K., Ahmad, M.: Optical solitons for Biswas–Milovic equation by new extended auxiliary equation method. Optic 204, 164181 (2020)

    Google Scholar 

  19. Sun, M.N., Deng, S.F., Chen, D.Y.: The B\(\rm {\ddot{a}}\)cklund transformation and novel solutions for the Toda lattice. Chaos Solitons Fract. 23(4), 1169–1175 (2005)

    Google Scholar 

  20. Wang, D.S., Wang, X.L.: Long-time asymptotics and the bright N-soliton solutions of the Kundu–Eckhaus equation via the Riemann–Hilbert approach. Nonlinear Anal. RWA 41, 334–361 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Wang, D.S., Guo, B., Wang, X.: Long-time asymptotics of the focusing Kundu–Eckhaus equation with nonzero boundary conditions. J. Differ. Equ. 266, 5209–5253 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Ma, W.X.: Riemann–Hilbert problems of a six-component mKdV system and its soliton solutions. Acta Mater. Sci. 39(2), 509–523 (2019)

    MathSciNet  Google Scholar 

  23. Rizvi, S.T.R., Ali, K., Hanif, H.: Optical solitons in dual core fibers under various nonlinearities. Mod. Phys. Lett. B 33(17), 1950189 (2019)

    MathSciNet  Google Scholar 

  24. Ali, I., Rizvi, S.T.R., Abbas, S.O., Zhou, Q.: Optical solitons for modulated compressional dispersive alfven and heisenberg ferromagnetic spin chains. Results Phys. 15, 102714 (2019)

    Google Scholar 

  25. Nawaz, B., Ali, K., Abbas, S.O., Rizvi, S.T.R., Zhou, Q.: Optical solitons for non-Kerr law nonlinear Schr\(\rm {\ddot{o}}\)dinger equation with third and fourth order dispersions. Chin. J. Phys. 60, 133–140 (2019)

    Google Scholar 

  26. Arif, A., Younis, M., Imran, M., Tantawy, M., Rizvi, S.T.R.: Solitons and lump wave solutions to the graphene thermophoretic motion system with a variable heat transmission. Eur. Phys. J. Plus 134(6), 303 (2019)

    Google Scholar 

  27. Ma, W.X.: Consevation laws by symmetries and adjoint sysmetries. Discrete Contin. Dyn.-S 11, 707–721 (2018)

    Google Scholar 

  28. Darvishi, M., Najafi, M., Kavitha, L., Venkatesh, M.: Stair and step soliton solutions of the integrable (2+1) and (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equations. Commun. Theor. Phys. 58(6), 785–794 (2012)

    MATH  Google Scholar 

  29. Osman, M.S., Wazwaz, A.M.: A general bilinear form to generate different wave structures of solitons for a (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Math. Method Appl. Sci. 2019, 1–7 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Ali, M.R., Ma, W.X.: New exact solutions of nonlinear (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Adv. Math. Phys. Article ID 9801638, 7 (2019)

  31. Jia, S.L., Gao, Y.T., Hu, L., Huang, Q.M., Hu, W.Q.: Soliton-like, periodic wave and rational solutions for a (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation in the incompressible fluid. Superlattices Microsyst. 102, 273–283 (2017)

    Google Scholar 

  32. de Vries, G., Korteweg, D.J.: On the change of form of longwaves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39, 422–443 (1985)

    MATH  Google Scholar 

  33. Ablowitz, M.J., Ablowitz, M.A., Clarkson, P.A., Clarkson, P.A.: Solitons, Nonlinear Evolution Equationa and Inverse Scattering, p. 149. Cambridge University Press, Cambridge (1991)

    MATH  Google Scholar 

  34. Hirota, R.: Exact solution of the Korteweg–de Vries equation for multiple collisions of solitons. Phys. Rev. Lett. 27(18), 1192–1194 (1971)

    MATH  Google Scholar 

  35. Gilson, C.R., Nimmo, J.J.C., Willox, R.: A (2+1)-dimensional generalization of the AKNS shallow water wave equation. Phys. Lett. A 180(4–5), 337–345 (1993)

    MathSciNet  Google Scholar 

  36. Liu, J.G., Tian, Y., Hu, J.G.: New non-traveling wave solutions for the (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Appl. Math. Lett. 79, 162–168 (2018)

    MathSciNet  Google Scholar 

  37. Liu, J., Zhang, Y., Muhammad, I.: Resonant soliton and complexiton solutions for (3+1)-dimensional dimensional Boiti–Leon–Manna–Pempinelli equation. Comput. Math. Appl. 75(11), 3939–3945 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Li, B.Q., Ma, Y.L.: Multiple-lump waves for a (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation arising from incompressible fluid. Comput. Math. Appl. 76(1), 204–214 (2018)

    MathSciNet  MATH  Google Scholar 

  39. Delisle, L., Mosaddeghi, M.: Classical and SUSY solutions of the Boiti–Leon–Manna–Pempinelli equation. J. Phys. A-Math. Theor. 46(11), 115203 (2013)

    MathSciNet  MATH  Google Scholar 

  40. El-Shiekh, R.M.: Periodic and solitary wave solutions for a generalized variable-coefficient Boiti–Leon–Pempinlli system. Comput. Math. Appl. 73(7), 1414–1420 (2017)

    MathSciNet  MATH  Google Scholar 

  41. Peng, W.Q., Tian, S.F., Zhang, T.T.: Breather waves and rational solutions in the (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Comput. Math. Appl. 77(3), 715–723 (2019)

    MathSciNet  Google Scholar 

  42. Pinar, Z.: Analytical studies for the Boiti–Leon–Monna–Pempinelli equations with variable and constant coefficients. Asymptot. Anal. (2019). https://doi.org/10.3233/ASY-191567

    Article  Google Scholar 

  43. Dong, H., Zhang, Y., Zhang, Y., Yin, B.: Generalized Bilinear Differential Operators, Binary Bell Polynomials, and Exact Periodic Wave Solution of Boiti–Leon–Manna–pempinelli Equation. Abstract and Applied Analysis, Hindawi (2014)

    MATH  Google Scholar 

  44. Liu, J.G., Du, J.Q., Zeng, Z.F., Nie, B.: New three-wave solutions for the (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Nonlinear Dyn. 88(1), 655–661 (2017)

    MathSciNet  Google Scholar 

  45. Osman, M.S., Wazwaz, A.M.: A general bilinear form to generate different wave structures of solitons for a (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Math. Methods Appl. Sci. 42(18), 6277–6283 (2019)

    MathSciNet  MATH  Google Scholar 

  46. Ma, H., Bai, Y.: Wronskian determinant solutions for the (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. J. Appl. Math. Phys. 1(05), 18 (2013)

    Google Scholar 

  47. Ma, H., Bai, Y., Deng, A.: Exact three-wave solutions for the (3+1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Adv. Differ. Equ. 2013, 321 (2013). https://doi.org/10.1186/1687-1847-2013-321

    Article  MathSciNet  MATH  Google Scholar 

  48. Dai, C.Q., Fan, Y., Zhang, N.: Re-observation on localized waves constructed by variable separation solutions of (1+1)-dimensional coupled integrable dispersionless equations via the projective Riccati equation method. Appl. Math. Lett. 96, 20–26 (2019)

    MathSciNet  MATH  Google Scholar 

  49. Dai, C.Q., Wang, Y.Y., Fan, Y., Yu, D.G.: Reconstruction of stability for Gaussian spatial solitons in quintic-septimal nonlinear materials under PT-symmetric potentials. Nonlinear Dyn. 92, 1351–1358 (2018)

    Google Scholar 

  50. Yu, J., Sun, Y.L.: Study of lump solutions to dimensionally reduced generalized KP equations. Nonlinear Dyn. 87, 2755–2763 (2017)

    MathSciNet  Google Scholar 

  51. Yue, Y.F., Huang, L.L., Chen, Y.: N-solitons, breathers, lumps and rogue wave solutions to a (3+1)-dimensional nonliear evolution equation. Comput. Math. Appl. 75(7), 2538–2548 (2018)

    MathSciNet  MATH  Google Scholar 

  52. Huang, L.L., Yue, Y.F., Chen, Y.: Localized waves and interaction solutions to a (3+1)-dimensional generalized KP equation. Comput. Math. Appl. 76(4), 931–844 (2018)

    MathSciNet  MATH  Google Scholar 

  53. Yu, J.P., Wang, F.D., Ma, W.X., Sun, Y.L., Khalique, C.M.: Multiple-soliton solutions and lumps of a (3+1)-dimensional generalized KP equation. Nonlinear Dyn. 95(2), 1687–1692 (2019)

    Google Scholar 

  54. Yong, X.L., Ma, W.X., Huang, Y.H., Liu, Y.: Lump solutions to the Kadomtsev–Petviashvili I equation with a self-consistent source. Comput. Math. Appl. 75(9), 3414–3419 (2018)

    MathSciNet  MATH  Google Scholar 

  55. Liu, Y.Q., Wen, X.Y.: Fission and fusion interaction phenomena of mixed lump kink solutions for a generalized (3+1)-dimensional B-type Kadomtsev–Petviashvili equation. Mod. Phys. Lett. B 32(15), 1850161 (2018)

    MathSciNet  Google Scholar 

  56. Liu, Y.Q., Wen, X.Y., Wang, D.S.: Novel interaction phenomena of localized waves in the generalized (3+1)-dimensinal KP equation. Comput. Math. Appl. 78(1), 1–19 (2019)

    MathSciNet  Google Scholar 

  57. Zhuang, J.H., Liu, Y.Q., Chen, X., Wu, J.J., Wen, X.Y.: Diverse solitons and interaction solutions for the (2+1)-dimensional CDGKS equation. Mod. Phys. Lett. B 33(16), 1950174 (2019)

    MathSciNet  Google Scholar 

  58. Karkhanehchi, M.M., Oliaee, M.: Simulation for different order solitons in optical fibers and the behaviors of kink and antikink solitons. WSEAS Trans. Commun. 7(3), 216–221 (2008)

    Google Scholar 

  59. He, C., Tang, Y., Ma, W., Ma, J.: Interaction phenomena between a lump and other multi-solitons for the (2+1)-dimensional BLMP and Ito equations. Nonlinear Dyn. 95(1), 29–42 (2018)

    Google Scholar 

  60. Ren, B., Ma, W.X., Yu, J.: Characteristics and interactions of solitary and lump waves of a (2+1)-dimensional coupled nonlinear partial differential equation. Nonlinear Dyn. 96, 717–727 (2019)

    Google Scholar 

  61. Ren, B., Ma, W.X., Yu, J.: Rational solutions and their interaction solutions of the (2+1)-dimensional modified dispersive water wave equation. Comput. Math. Appl. 77(8), 2086–2095 (2019)

    MathSciNet  Google Scholar 

  62. Ma, W.X.: Interaction solutions to the Hirota–Satsuma–Ito equation in (2+1)-dimensions. Front. Math. China 14(3), 619–629 (2019)

    MathSciNet  MATH  Google Scholar 

  63. Zhang, Y., Dong, H., Zhang, X., Yang, H.: Rational solutions and lump solutions to the generalized (3+1)-dimensional Shallow Water-like equation. Comput. Math. Appl. 73, 246–252 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 11905013, 11971067, 11772063), the Beijing Natural Science Foundation under Grant (No. 1182009), and the Scientific Research Common Program of Beijing Municipal Commission of Education under Grant (No. KM201911232011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deng-Shan Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Liu, Y., Piao, L. et al. Nonlinear localized waves resonance and interaction solutions of the (3 + 1)-dimensional Boiti–Leon–Manna–Pempinelli equation. Nonlinear Dyn 100, 1527–1541 (2020). https://doi.org/10.1007/s11071-020-05573-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05573-y

Keywords

Mathematics Subject Classification

Navigation