Skip to main content
Log in

Cross-well chaos and escape phenomena in driven oscillators

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The paper is devoted to the study of common features in regular and strange behavior of the three classic dissipative softening type driven oscillators: (a) twin-well potential system, (b) single-well potential unsymmetric system and (c) single-well potential symmetric system.

Computer simulations are followed by analytical approximations. It is shown that the mathematical techniques and physical concepts related to the theory of nonlinear oscillations are very useful in predicting bifurcations from regular, periodic responses to cross-well chaotic motions or to escape phenomena. The approximate analysis of periodic, resonant solutions and of period doubling or symmetry breaking instabilities in the Hill's type variational equation provides us with closed-form algebraic simple formulae; that is, the relationship between critical system parameter values, for which strange phenomena can be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogoliubov, N. N. and Mitropolski, Y. A., Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach Science Publishers, New York, 1961 (in Russian-4th edition Nauka, Moskva, 1974).

    Google Scholar 

  2. Hayashi, Ch., Nonlinear Oscillations in Physical Systems, Princeton University Press, Princeton, NJ 1985.

    Google Scholar 

  3. Nayfeh, A. H. and Mook, D. T., Nonlinear Oscillations, Wiley-Interscience, New York, 1979.

    Google Scholar 

  4. Kriukov, B. J., Forced Oscillations in Strongly Nonlinear Systems, Masinostroienie, Moskva, 1984 (in Russian).

    Google Scholar 

  5. Szemplińska-Stupnicka, W., The Behavior of Non-Linear Vibrating Systems, Kluwer Academic Publishers, 1990.

  6. Ueda, Y., ‘Randomly transitional phenomena in the system governed by Duffing's equation’, J. Stat. Phys. 20, 1979, 181–196.

    Google Scholar 

  7. Ueda, Y., ‘Explosion of strange attractor exhibited by Duffing equation, Annals N.Y. Acad. Sci. 357, 1980, 422–434.

    Google Scholar 

  8. Ueda, Y., ‘Random phenomena resulting from nonlinearity in the system described by Duffing's equation’, Int. J. Non-L. Mech. 20, 1985, 481–491.

    Google Scholar 

  9. Holmes, P., ‘A nonlinear oscillator with a strange attractor’, Phil. Trans. Roy. Soc. Ser. A 292 (1394), 1979, 419–448.

    Google Scholar 

  10. Holmes, P. J. and Moon, F. C., ‘Strange attractors and chaos in nonlinear mechanics, J. Appl. Mech. 50, 1983, 1021–1032.

    Google Scholar 

  11. Moon, F. C. and Li, C. X., ‘Fractal basin boundaries and homoclinic orbits for periodic motion in a two-well potential’, Phys. Rev. Ltrs. 55, 1985, 1439–1444.

    Google Scholar 

  12. Moon, F. C. and Li, C. X., ‘The fractal dimension of the two-well potential strange attractor’, Physica D 17, 1985, 99–108.

    Google Scholar 

  13. Moon, F. C., Chaotic Vibrations, Wiley-Interscience, New York, 1987.

    Google Scholar 

  14. Guckenheimer, J. and Holmes, P., Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.

    Google Scholar 

  15. Huberman, B. A. and Crutchfield, J. P., ‘Chaotic states of anharmonic system in periodic fields’, Phys. Rev. Ltrs. 43, 1979, 1743–1747.

    Google Scholar 

  16. Thompson, J. M. T. and Stewart, H. B., Nonlinear Dynamics and Chaos, Wiley-Interscience, New York, 1986.

    Google Scholar 

  17. Tongue, B. H., ‘Existence of chaos in a one-degree of-freedom systems’, J. Sound Vib. 110, 1986, 69–78.

    Google Scholar 

  18. Tang, D. M. and Dowell, E. H., ‘On the threshold force for chaotic motions for a forced buckled beam’, J. Appl. Mech. 55, 1988, 190–196.

    Google Scholar 

  19. Dowell, E. H., ‘Chaotic oscillations in mechanical systems’, Comput. Mech. 1988, 199–216.

  20. Pezeshki, Ch. and Dowell, E. H., ‘On chaos and fractal behavior in a generalized Duffing's system’, Physica D 32, 1988, 14–209.

    Google Scholar 

  21. Miles, J. W., ‘On the resonant response of a weakly damped, nonlinear oscillator’, J. Sound Vib. 131, 1989, 489–496.

    Google Scholar 

  22. Nayfeh, A. H. and Sanchez, N. E., ‘Bifurcations in forced softening Duffing oscillator’, Int. J. Non-L. Mech. 24, 1989, 483–497.

    Google Scholar 

  23. Ueda, Y., Yoshida, S., Stewart, H. B., and Thompson, J. M. T., ‘Basin explosions and escape phenomena in the twin-well Duffing oscillator: compound global bifurcations organizing behavior’, Phil. Trans. R. Soc. London A 332, 1990, 169–186.

    Google Scholar 

  24. Kriukov, B. J. and Seredovich, G. J., ‘On strange behaviour of solution of Duffing equation’, Doklady Akademii Nauk SSSR 258, 1981, 311–314 (in Russian).

    Google Scholar 

  25. Tousi, S. and Bajaj, A. K., ‘Period doubling bifurcations and modulated motions in forced mechanical systems’, J. Appl. Mech. 52, 1985, 446–452.

    Google Scholar 

  26. Seydel, R., ‘Attractors of a Duffing equation-dependence on the exciting frequency’, Physica D 17, 1985, 308–312.

    Google Scholar 

  27. Benedettini, F. and Rega, G., ‘1/2 subharmonic resonance and chaotic motion in a model of elastic cable’, in Nonlinear Dynamics in Engineering Systems, ed. Schiehlen, Springer-Verlag, Berlin, 1990, 27–34.

    Google Scholar 

  28. Bapat, C. N. and Sankar, S., ‘Periodic and chaotic motions of a mass-spring system under harmonic force’, J. Sound Vib. 108, 1986, 533–536.

    Google Scholar 

  29. Szemplińska-Stupnicka, W., Joos, G., and Moon, F. C., Chaotic Motion in Nonlinear Dynamical Systems, Springer-Verlag, Wien, 1988.

    Google Scholar 

  30. Szemplińska-Stupnicka, W., ‘Bifurcations of harmonic solution leading to chaotic motion in the softening type Duffing's oscillator’, Int. J. Non-L. Mech. 23, 1988, 257–277.

    Google Scholar 

  31. Szemplińska-Stupnicka, W. and Niezgodzki, P., ‘The approximate approach to chaos phenomena in oscillators having single equilibrium position’, J. Sound Vib. 141, 1990, 181–192.

    Google Scholar 

  32. Schmidt, G., ‘Onset of chaos and global analytical solutions for Duffing's oscillator’, ZAMM 16, 1986, 129–140.

    Google Scholar 

  33. Schmidt, G. and Dum, R., ‘Van der Pol-Duffing oscillators and trigonometric interaction’, ZAMM 69, 1989, 267–274.

    Google Scholar 

  34. Takimoto, N. and Yamashida, H., ‘The variational approach to the theory of subharmonic bifurcations’, Physica D 26 1987, 251–256.

    Google Scholar 

  35. Virgin, L. N., ‘The nonlinear rolling response of a vessel including chaotic motions leading to a capsize in regular seas’, Appl. Ocean Res. 9 1987, 89–95.

    Google Scholar 

  36. Virgin, L. N., ‘On the harmonic response of an oscillator with unsymmetric restoring force’, J. Sound Vib. 126, 1988, 157–166.

    Google Scholar 

  37. Soliman, M. S. and Thompson, J. M. T., ‘Integrity measures quantifying the erosion of smooth and fractal basins of attraction’, J. Sound Vib. 1990 (in press).

  38. Thompson, J. M. T., ‘Loss of engineering integrity due to the erosion of absolute and transient basin boundaries’, in Nonlinear Dynamics in Engineering Systems, ed. Schiehlen, Springer-Verlag, Berlin, 1989, 313–320.

    Google Scholar 

  39. Szemplińska-Stupnicka, W., ‘Secondary resonances and approximate models of routes to chaotic motions in non-linear oscillators’, J. Sound Vib. 113, 1987, 155–172.

    Google Scholar 

  40. Szemplińska-Stupnicka, W., ‘The refined approximate criterion for chaos in a two-state mechanical oscillator’, Ing. Archiv 58, 1988, 354–366.

    Google Scholar 

  41. Szemplińska-Stupnicka, W., Plaut, R. H., and Hsieh, J. C., ‘Period doubling and chaos in unsymmetric structures under parametric excitation, J. Appl. Mech. 56, 1989, 947–952.

    Google Scholar 

  42. Szemplińska-Stupnicka, W., ‘The approximate criteria for chaos in multi-well potential vibrating systems’, in Nonlinear Dynamics in Engineering Systems, ed. Schiehlen, Springer-Verlag, Berlin, 1989, 305–312.

    Google Scholar 

  43. Szemplińska-Stupnicka, W. and Rudowski, J., ‘Local methods in predicting an occurrence of chaos in the two-well potential system: superharmonic frequency region’, J. Sound Vib. 1991 (in press).

  44. Bolotin, V. V., Dynamic Stability of Elastic Systems, Holden-Day, San Francisco, CA, 1964.

    Google Scholar 

  45. Grebogi, C., Ott, E., and Yorke, J. A., ‘Crisis, sudden changes in chaotic attractors, and transient chaos’, Physica D 7, 1983, 181–200.

    Google Scholar 

  46. Raty, R., vonBoem, J., and Isomáki, H. M., ‘Absence of inversion-symmetric limit cycles of even periods and the chaotic motion of Duffing's oscillator’, Phys. Ltr. 103A, 1984, 289–291.

    Google Scholar 

  47. Swift, J. and Wiesenfeld, K., ‘Suppression of period doubling in symmetric systems’, Phys. Rev. Ltr. 52, 1984, 705–710.

    Google Scholar 

  48. Thompson, J. M. T., ‘Chaotic phenomena triggering the escape from a potential well’, Proc. R. Soc. London A 421, 1989, 195–225.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szemplińska-Stupnicka, W. Cross-well chaos and escape phenomena in driven oscillators. Nonlinear Dyn 3, 225–243 (1992). https://doi.org/10.1007/BF00122303

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00122303

Key words

Navigation